(一)必做題:第9.10.11.12題是必做題.每道試題考生都必須做答. 查看更多

 

題目列表(包括答案和解析)

 

【必做題】第22題和第23題為必做題, 每小題10分,共20分.要寫出必要的文字說明或演算步驟.

 

有甲、乙兩個箱子,甲箱中有張卡片,其中張寫有數字,張寫有數字,張寫有數字;乙箱中也有張卡片,其中張寫有數字,張寫有數字張寫有數字.

(1)如果從甲、乙箱中各取一張卡片,設取出的張卡片上數字之積為,求

    分布列及的數學期望;

(2)如果從甲箱中取一張卡片,從乙箱中取兩張卡片,那么取出的張卡片都寫有

    數字的概率是多少?

 

 

查看答案和解析>>


【必做題】第22題和第23題為必做題, 每小題10分,共20分.要寫出必要的文字說明或演算步驟.
有甲、乙兩個箱子,甲箱中有張卡片,其中張寫有數字,張寫有數字,張寫有數字;乙箱中也有張卡片,其中張寫有數,張寫有數字,張寫有數字.
(1)如果從甲、乙箱中各取一張卡片,設取出的張卡片上數字之積為,求
分布列及數學期望;
(2)如果從甲箱中取一張卡片,從乙箱中取兩張卡片,那么取出的張卡片都寫有
數字的概率是多少?

查看答案和解析>>

二、填空題:本大題共7小題,考生作答6小題,每小題5分,滿分30分.

(一)必做題(9~13題)

9.如圖1是一個空間幾何體的三視圖,則該幾何體的體積為     

 

查看答案和解析>>

【必做題】第22題、第23題,每題10分,共計20分.請在答題卡指定區域內作答,解答時應寫出
文字說明、證明過程或演算步驟。http://www.mathedu.cn
22. (本小題滿分10分)
如圖,在正四棱柱中,,點的中點,點上,設二面角的大小為。
(1)當時,求的長;
(2)當時,求的長。

查看答案和解析>>

如右圖所示是某一容器的三視圖,現向容器中勻速注水,容器中水面的高度隨時間變化的圖象可能是(    )

 


                     

(一)必做題(11~13題)

查看答案和解析>>

一、選擇題:(8,每小題5,滿分40)

題號

1

2

3

4

5

6

7

8

答案

A

C

D

C

A

D

B

B

二、填空題:(每題5分,共30分)

9. 8                10. 60             11. 8            12.

13. 10或0(答對一個給3分)        14.          15.

三、解答題(本大題共6小題,共80分)

16.(本題滿分12分)

解:(Ⅰ) =……1分

=……2分

……4分

 

……6分

……7分

.……8分

(Ⅱ)在中,,

……9分

由正弦定理知:……10分

=.

……12分

 

17. 本題滿分12分

 解:(Ⅰ)由 是方程的兩根,注意到.……2分

.

等比數列.的公比為,……4分

(Ⅱ)……5分

……7分

數列是首項為3,公差為1的等差數列. ……8分

(Ⅲ) 由(Ⅱ)知數列是首項為3,公差為1的等差數列,有

……=……

=……10分

,整理得,解得.……11分

的最大值是7. ……12分

 

18. 本題滿分14分

解: (Ⅰ)從2種服裝商品,2種家電商品,3種日用商品中,選出3種商品一共有種選法,.選出的3種商品中沒有日用商品的選法有種, 所以選出的3種商品中至少有一種日用商品的概率為.……4分

(Ⅱ)顧客在三次抽獎中所獲得的獎金總額是一隨機變量,設為X,其所有可能值為0, ,2,3.……6分

X=0時表示顧客在三次抽獎中都沒有獲獎,所以……7分

 

同理可得……8分

……9分

……10分

于是顧客在三次抽獎中所獲得的獎金總額的期望值是.……12分

要使促銷方案對商場有利,應使顧客獲獎獎金總額的期望值不大于商場的提價數額,因此應有,所以, …… 13分

故商場應將中獎獎金數額最高定為100元,才能使促銷方案對商場有利. …… 14分

 

19.本題滿分14分

.解:(Ⅰ) 證明:方法一)連AC,BD交于O點,連GO,FO,EO.

∵E,F分別為PC,PD的中點,∴//,同理//, //    

四邊形EFOG是平行四邊形, 平面EFOG. ……3分

又在三角形PAC中,E,O分別為PC,AC的中點,PA//EO……4分

平面EFOG,PA平面EFOG, ……5分

PA//平面EFOG,即PA//平面EFG. ……6分

方法二) 連AC,BD交于O點,連GO,FO,EO.

∵E,F分別為PC,PD的中點,∴//,同理//

//AB,//

平面EFG//平面PAB, ……4分

又PA平面PAB,平面EFG. ……6分

方法三)如圖以D為原點,以

為方向向量建立空間直角坐標系.

則有關點及向量的坐標為:

……2分

設平面EFG的法向量為

.……4分

,……5分

平面EFG.

 AP//平面EFG. ……6分

(Ⅱ)由已知底面ABCD是正方形

,又∵面ABCD

平面PCD,向量是平面PCD的一個法向量, =……8分

又由(Ⅰ)方法三)知平面EFG的法向量為……9分

……10分

結合圖知二面角的平面角為……11分

(Ⅲ) ……14分

 

20. 本題滿分14分

 (Ⅰ)由題意可得點A,B,C的坐標分別為.……1分

設橢圓的標準方程是.……2分

……4分

.……5分

橢圓的標準方程是……6分

(Ⅱ)由題意直線的斜率存在,可設直線的方程為.……7分

設M,N兩點的坐標分別為

聯立方程:

消去整理得,

……9分

若以MN為直徑的圓恰好過原點,則,所以,……10分

 

所以,,

所以,

……11分   得……12分

所以直線的方程為,或.……13分

所以存在過P(0,2)的直線:使得以弦MN為直徑的圓恰好過原點. ……14分

 

21: 本題滿分14分

 (Ⅰ)

……2分

 ……4分

(Ⅱ)

(?)0<t<t+2<,t無解;……5分

(?)0<t<<t+2,即0<t<時,;……7分

(?),即時,,……9分

……10分

(Ⅲ)由題意:

可得……11分

,

……12分

,得(舍)

時,;當時,

時,取得最大值, =-2……13分

.

的取值范圍是.……14分

 


同步練習冊答案
久久精品免费一区二区视