題目列表(包括答案和解析)
(9分)如圖,在四棱錐P—ABCD中,底面ABCD為矩形,側棱PA⊥底面ABCD,AB=,BC=1,PA=2,E為PD的中點.
(1)求直線BE與平面ABCD所成角的正切值;
(2)在側面PAB內找一點N,使NE⊥面PAC,
并求出N點到AB和AP的距離.
(9分)如圖,在四棱錐P—ABCD中,底面ABCD為矩形,側棱PA⊥底面ABCD,AB=,BC=1,PA=2,E為PD的中點.
(1)求直線BE與平面ABCD所成角的正切值;
(2)在側面PAB內找一點N,使NE⊥面PAC,
并求出N點到AB和AP的距離.
7、9、10班同學做乙題,其他班同學任選一題,若兩題都做,則以較少得分計入總分.
(甲)已知f(x)=ax-ln(-x),x∈[-e,0),,其中e=2.718 28…是自然對數的底數,a∈R.
(1)若a=-1,求f(x)的極值;
(2)求證:在(1)的條件下,;
(3)是否存在實數a,使f(x)的最小值是3,如果存在,求出a的值;如果不存在,說明理由.
(乙)定義在(0,+∞)上的函數,其中e=2.718 28…是自然對數的底數,a∈R.
(1)若函數f(x)在點x=1處連續,求a的值;
(2)若函數f(x)為(0,1)上的單調函數,求實數a的取值范圍;并判斷此時函數f(x)在(0,+∞)上是否為單調函數;
(3)當x∈(0,1)時,記g(x)=lnf(x)+x2-ax. 試證明:對,當n≥2時,有
(1)p:2n-1(n∈Z)是奇數;q:2n-1(n∈Z)是偶數;
(2)p:a2+b2<0(a∈R,b∈R);q:a2+b2≥0;
(3)p:集合中元素是確定的;q:集合中元素是無序的;
(4)p:π是無理數;q:不是實數;
(5)p:9是質數;q:8是12的約數;
(6)p:={0};q:
.
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com