題目列表(包括答案和解析)
函數y=x2(x>0)的圖像在點(ak,ak2)處的切線與x軸交點的橫坐標為ak+1,k為正整數,a1=16,則a1+a3+a5=____▲_____
在點(ak,ak2)處的切線方程為:當
時,解得
,
所以。
設函數f(x)=lnx,g(x)=ax+,函數f(x)的圖像與x軸的交點也在函數g(x)的圖像上,且在此點處f(x)與g(x)有公切線.[來源:學?。網]
(Ⅰ)求a、b的值;
(Ⅱ)設x>0,試比較f(x)與g(x)的大小.[來源:學,科,網Z,X,X,K]
【解析】第一問解:因為f(x)=lnx,g(x)=ax+
則其導數為
由題意得,
第二問,由(I)可知,令
。
∵, …………8分
∴是(0,+∞)上的減函數,而F(1)=0, …………9分
∴當時,
,有
;當
時,
,有
;當x=1時,
,有
解:因為f(x)=lnx,g(x)=ax+
則其導數為
由題意得,
(11)由(I)可知,令
。
∵, …………8分
∴是(0,+∞)上的減函數,而F(1)=0, …………9分
∴當時,
,有
;當
時,
,有
;當x=1時,
,有
4. m>2或m<-2 解析:因為f(x)=在(-1,1)內有零點,所以f(-1)f(1)<0,即(2+m)(2-m)<0,則m>2或m<-2
隨機變量的所有等可能取值為1,2…,n,若
,則( )
A. n=3 B.n=4 C. n=5 D.不能確定
5.m=-3,n=2 解析:因為的兩零點分別是1與2,所以
,即
,解得
6.解析:因為
只有一個零點,所以方程
只有一個根,因此
,所以
D
[解析] 依題意得0<a<1,于是由f(1-)>1得loga(1-
)>logaa,0<1-
<a,由此解得1<x<
,因此不等式f(1-
)>1的解集是(1,
),選D.
已知函數.
(Ⅰ)求函數的單調區間;
(Ⅱ)設,若對任意
,
,不等式
恒成立,求實數
的取值范圍.
【解析】第一問利用的定義域是
由x>0及 得1<x<3;由x>0及
得0<x<1或x>3,
故函數的單調遞增區間是(1,3);單調遞減區間是
第二問中,若對任意不等式
恒成立,問題等價于
只需研究最值即可。
解: (I)的定義域是
......1分
............. 2分
由x>0及 得1<x<3;由x>0及
得0<x<1或x>3,
故函數的單調遞增區間是(1,3);單調遞減區間是
........4分
(II)若對任意不等式
恒成立,
問題等價于,
.........5分
由(I)可知,在上,x=1是函數極小值點,這個極小值是唯一的極值點,
故也是最小值點,所以; ............6分
當b<1時,;
當時,
;
當b>2時,;
............8分
問題等價于 ........11分
解得b<1 或 或
即
,所以實數b的取值范圍是
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com