解:因.故向量2和所對應的點A.B都在以原點為圓心.2為半徑的圓上.從而|2-|的幾何意義即表示弦AB的長.故|2-|的最大值為4. 查看更多

 

題目列表(包括答案和解析)

已知向量=(sinB,1-cosB),且與向量=(2,0)所成角為,其中A、B、C是△ABC的內角。

(1)求角B的大。

(2)求sinA+sinC的取值范圍。

 

查看答案和解析>>

(1)已知矩陣A=
a2
1b
有一個屬于特征值1的特征向量
α
=
2
-1
,
①求矩陣A;
②已知矩陣B=
1-1
01
,點O(0,0),M(2,-1),N(0,2),求△OMN在矩陣AB的對應變換作用下所得到的△O'M'N'的面積.
(2)已知在直角坐標系xOy中,直線l的參數方程為
x=t-3
y=
3
 t
(t為參數),在極坐標系(與直角坐標系xOy取相同的長度單位,且以原點O為極點,以x軸正半軸為極軸)中,曲線C的極坐標方程為ρ2-4ρco sθ+3=0.
①求直線l普通方程和曲線C的直角坐標方程;
②設點P是曲線C上的一個動點,求它到直線l的距離的取值范圍.
(3)已知函數f(x)=|x-1|+|x+1|.
①求不等式f(x)≥3的解集;
②若關于x的不等式f(x)≥a2-a在R上恒成立,求實數a的取值范圍.

查看答案和解析>>

已知數列的前項和為,且 (N*),其中

(Ⅰ) 求的通項公式;

(Ⅱ) 設 (N*).

①證明: ;

② 求證:.

【解析】本試題主要考查了數列的通項公式的求解和運用。運用關系式,表示通項公式,然后得到第一問,第二問中利用放縮法得到,②由于,

所以利用放縮法,從此得到結論。

解:(Ⅰ)當時,由.  ……2分

若存在

從而有,與矛盾,所以.

從而由.  ……6分

 (Ⅱ)①證明:

證法一:∵

 

.…………10分

證法二:,下同證法一.           ……10分

證法三:(利用對偶式)設,

.又,也即,所以,也即,又因為,所以.即

                    ………10分

證法四:(數學歸納法)①當時, ,命題成立;

   ②假設時,命題成立,即,

   則當時,

    即

故當時,命題成立.

綜上可知,對一切非零自然數,不等式②成立.           ………………10分

②由于,

所以,

從而.

也即

 

查看答案和解析>>

判斷下列命題是否正確,不正確的請說明理由.

(1)若向量ab同向,且|a|>|b|,則ab.

(2)若向量|a|=|b|,則ab的長度相等且方向相同或相反.

(3)對于任意向量ab,若|a|=|b|且ab的方向相同,則a=b.

(4)由于零向量方向不確定,故0不能與任意向量平行.

(5)向量a與向量b平行,則向量ab方向相同或相反.

(6)向量與向量是共線向量,則A、B、C、D四點在一條直線上.

(7)起點不同,但方向相同且模相等的幾個向量是相等向量.

查看答案和解析>>

已知是等差數列,其前n項和為Sn,是等比數列,且,.

(Ⅰ)求數列的通項公式;

(Ⅱ)記,,證明).

【解析】(1)設等差數列的公差為d,等比數列的公比為q.

,得,.

由條件,得方程組,解得

所以,.

(2)證明:(方法一)

由(1)得

     ①

   ②

由②-①得

,

(方法二:數學歸納法)

①  當n=1時,,,故等式成立.

②  假設當n=k時等式成立,即,則當n=k+1時,有:

   

   

,因此n=k+1時等式也成立

由①和②,可知對任意,成立.

 

查看答案和解析>>

1.解:由題意可知A=(-2,3),B=(0,4),∴=.

2.解:∵=3x2,∵在(a,a3)處切線為y-a3=3a2(x-a),令y=0,得切線與x軸交點(),切線與直線x=a交于(a,a3),∴曲線處的切線與x軸、直線所圍成的三角形的面積為S=,令S=,解得a=±1.

3.解:由已知得1-tanαtanβ=tanα-tanβ,∴tanα=.

4.解:=

5.解:4位乘客進入4節車廂共有256種不同的可能,6位乘客進入各節車廂的人數恰為0,1,2,3的方法共有,∴這6位乘客進入各節車廂的人數恰好為0,1,2,3的概率為.

6.解:①菱形不可能,如果這個四邊形是菱形,這時菱形的一條對角線垂直拋物線的對稱軸,這時四邊形的必有一個頂點在拋物線的對稱軸上(非拋物線的頂點); ④平行四邊形,也不可能,因為拋物上四個點組成的四邊形最多有一組對邊平行.故連接拋物線上任意四點組成的四邊形可能是②③⑤.

7. 解:復數=。

8. 解:。

9. 解:已知 ,,,∴ ,,

=

=

10. 解:在數列中,若,∴ ,即{}是以為首項,2為公比的等比數列,,所以該數列的通項.

11.解:設,函數有最大值,∵有最小值,∴ 0<a<1, 則不等式的解為,解得2<x<3,所以不等式的解集為.

12.解:已知變量滿足約束條件 在坐標系

中畫出可行域,如圖為四邊形ABCD,其中A(3,1),

目標函數(其中)中的z表示斜率為-a的直線系中的

截距的大小,若僅在點處取得最大值,則斜率應小于,即

,所以的取值范圍為(1,+∞)。

13.【答案】

【分析】

14.【答案】:7

【分析】:畫出可行域,當直線過點(1,2)時,

15.【答案】

【分析】恒成立,

恒成立,       

16.【答案】:18

【分析】是方程的兩根,故有:

         (舍)。

        

17.【答案】:25

【分析】:所有的選法數為,兩門都選的方法為。         故共有選法數為

18.【答案】

【分析】

         代入得:

         設

         又

        

19.解:, 

20.解:  點在x=0處連續,

所以  故

21.解: 

22.解:  ,

23.解:設圓心,直線的斜率為, 弦AB的中點為,的斜率為,所以 由點斜式得

24. 解:則底面共,

,由分類計數原理得上底面共,由分步類計數原理得共有

25.解析:本小題主要考查三點共線問題。

      (舍負).

26.解析:本小題主要考查橢圓的第一定義的應用。依題直線過橢圓的左焦點,在 中,,又,∴

27.解析:本小題主要考查三角形中正弦定理的應用。依題由正弦定理得:

,即,

28.解析:本小題主要考查球的內接幾何體體積計算問題。其關鍵是找出

球心,從而確定球的半徑。由題意,三角形DAC,三角形DBC都

是直角三角形,且有公共斜邊。所以DC邊的中點就是球心(到

D、A、C、B四點距離相等),所以球的半徑就是線段DC長度的一半。

29.解析:本小題主要考查二次函數問題。對稱軸為下方圖像翻到軸上方.由區間[0,3]上的最大值為2,知解得檢驗時,

不符,而時滿足題意.

30.解析:本小題主要考查排列組合知識。依題先排除1和2的剩余4個元素有

種方案,再向這排好的4個元素中插入1和2捆綁的整體,有種插法,

∴不同的安排方案共有種。

31.解析:本小題主要考查線性規劃的相關知識。由恒成立知,當時,

恒成立,∴;同理,∴以,b為坐標點

所形成的平面區域是一個正方形,所以面積為1.

32.解析:,所以,系數為.

33.解析:由,所以,表面積為.

34.解析:拋物線的焦點為,所以圓心坐標為,圓C的方程為.

35.解析:令,則

所以.

36.解析:

所以.

37.解析:由已知得,單調遞減,所以當時,

所以,因為有且只有一個常數符合題意,所以,解得,所以的取值的集合為.

38.【解】:∵展開式中項為

  ∴所求系數為   故填

【點評】:此題重點考察二項展開式中指定項的系數,以及組合思想;

【突破】:利用組合思想寫出項,從而求出系數;

39.【解】:如圖可知:過原心作直線的垂線,則長即為所求;

的圓心為,半徑為

 點到直線的距離為

  ∴      故上各點到的距離的最小值為

【點評】:此題重點考察圓的標準方程和點到直線的距離;

【突破】:數形結合,使用點到直線的距離距離公式。

40.【解】:如圖可知:∵

    ∴  ∴正四棱柱的體積等于

【點評】:此題重點考察線面角,解直角三角形,以及求正四面題的體積;

【突破】:數形結合,重視在立體幾何中解直角三角形,熟記有關公式。

41.【解】:∵等差數列的前項和為,且 

  即   ∴

  ∴,

  ∴  故的最大值為,應填

【點評】:此題重點考察等差數列的通項公式,前項和公式,以及不等式的變形求范圍;

【突破】:利用等差數列的前項和公式變形不等式,利用消元思想確定的范圍解答本題的關鍵;

42.解:

43.解:設,即

是等邊三角形,,

中,

44.解:①,向量垂直

構成等邊三角形,的夾角應為

所以真命題只有②。

45.解:分兩類:第一棒是丙有,第一棒是甲、乙中一人有

因此共有方案

46.【答案】  2

【解析】則向量與向量共線

47.【答案】 2

【解析】,∴切線的斜率,所以由

48.【答案】

【解析】設A(,)B(,)由,,();∴由拋物線的定義知

【考點】直線與拋物線的位置關系,拋物線定義的應用

49.【答案】兩組相對側面分別平行;一組相對側面平行且全等;對角線交于一點;底面是平行四邊形.

注:上面給出了四個充要條件.如果考生寫出其他正確答案,同樣給分.

50.答案:

解析:本小題主要考查求反函數基本知識。求解過程要注意依據函數的定義域進行分段求解以及反函數的定義域問題。

51.答案:

解析:本小題主要考查立體幾何球面距離及點到面的距離。設球的半徑為,則,∴、兩點對球心張角為,則,∴,∴,∴所在平面的小圓的直徑,∴,設所在平面的小圓圓心為,則球心到平面ABC的距離為

52.答案:5

解析:本小題主要考查二項式定理中求特定項問題。依題中,只有時,其展開式既不出現常數項,也不會出現與乘積為常數的項。

53.答案:

解析:本小題主要針對考查三角函數圖像對稱性及周期性。依題在區間有最小值,無最大值,∴區間的一個半周期的子區間,且知的圖像關于對稱,∴,取

54.解:由已知得,則

55.解:

56.

57.解:真命題的代號是:   BD  。易知所盛水的容積為容器容量的一半,故D正確,于是A錯誤;水平放置時由容器形狀的對稱性知水面經過點P,故B正確;C的錯誤可由圖1中容器位置向右邊傾斜一些可推知點P將露出水面。

58.【答案】

【解析】

59.【答案】

【解析】

60.【答案】(-1,2)

【解析】由函數的圖象過點(1,2)得: 即函數過點 則其反函數過點所以函數的圖象一定過點

61.【答案】 ,

【解析】(1)當a>0時,由,所以的定義域是;

        (2) 當a>1時,由題意知;當0<a<1時,為增函數,不合;

           當a<0時,在區間上是減函數.故填.

62.【答案】   ,  6

【解析】第二空可分:

①當 時, ;

②當 時, ;

③當時, ;

所以 

也可用特殊值法或ij同時出現6次.

63.解:由余弦定理,原式

64.解:由題意知所以

,所以解集為。

65.解:依題意,所以

66.解:由觀察可知當,每一個式子的第三項的系數是成等差數列的,所以

第四項均為零,所以

67.解:令,令

    所以

68. 解:圓心為,要沒有公共點,根據圓心到直線的距離大于半徑可得

,即,

69.解:依題可以構造一個正方體,其體對角線就是外接球的直徑.

 ,

70. 解:①對除法如不滿足,所以排除,

②取,對乘法, ③④的正確性容易推得。

71.【答案】: -1

【分析】: a-2ai-1=a-1-2ai=2i,a=-1

【考點】: 復數的運算

【易錯】: 增根a=1沒有舍去。

72.【答案】: 0

【分析】: 利用數形結合知,向量a與

久久精品免费一区二区视