如圖所示.已知圓為圓上一動點.點P在AM上. 查看更多

 

題目列表(包括答案和解析)

如圖所示,已知圓為圓上一動點,點P在AM上,點N在CM上,且滿足的軌跡為曲線E.

(I)求曲線E的方程;                                               

(II)過點A且傾斜角是45°的直線l交曲線E于兩點H、Q,求|HQ|.

查看答案和解析>>

如圖所示,已知圓為圓上一動點,點是線段的垂直平分線與直線的交點.

(1)求點的軌跡曲線的方程;

(2)設點是曲線上任意一點,寫出曲線在點處的切線的方程;(不要求證明)

(3)直線過切點與直線垂直,點關于直線的對稱點為,證明:直線恒過一定點,并求定點的坐標.

 

查看答案和解析>>

如圖所示,已知圓為圓上一動點,點是線段的垂直平分線與直線的交點.

(1)求點的軌跡曲線的方程;

(2)設點是曲線上任意一點,寫出曲線在點處的切線的方程;(不要求證明)

(3)直線過切點與直線垂直,點關于直線的對稱點為,證明:直線恒過一定點,并求定點的坐標.

 

查看答案和解析>>

(12分)如圖所示,已知圓為圓上一動點,點上,點上,且滿足的軌跡為曲線.

(1)求曲線的方程;

(2)若直線與(1)中所求點的軌跡交于不同兩點是坐標原點,且,求△的面積的取值范圍.

  

 

 

 

 

查看答案和解析>>

如圖所示,已知圓為圓上一動點,點是線段的垂直平分線與直線的交點.

(1)求點的軌跡曲線的方程;
(2)設點是曲線上任意一點,寫出曲線在點處的切線的方程;(不要求證明)
(3)直線過切點與直線垂直,點關于直線的對稱點為,證明:直線恒過一定點,并求定點的坐標.

查看答案和解析>>

1、A   2、B   3、B   4、D    5、C    6、C

7、    8、     9、0      10、 

11、【解】(1)

∴NP為AM的垂直平分線,∴|NA|=|NM|.…………………………2分

∴動點N的軌跡是以點C(-1,0),A(1,0)為焦點的橢圓.

且橢圓長軸長為焦距2c=2.   ……………5分

∴曲線E的方程為………………6分

(2)當直線GH斜率存在時,

設直線GH方程為

……………………8分

,

……………………10分

又當直線GH斜率不存在,方程為

……………………………………12分

12、【解】(1)由題設知

由于,則有,所以點A的坐標為,

所在直線方程為, ………………………………3分

所以坐標原點O到直線的距離為

,所以,解得,

所求橢圓的方程為.……………………………………………5分

(2)由題意知直線l的斜率存在,設直線l的方程為,則有

,由于

,解得     …………………8分

又Q在橢圓C上,得,

解得, …………………………………………………………………………10分

故直線l的方程為,

.   ……………………………………………12分

 


同步練習冊答案
久久精品免费一区二区视