8.若二面角的平面角是銳角.點P到.和棱的距離分別為.4和.則二面角的大小為 查看更多

 

題目列表(包括答案和解析)

如圖1,在正三角形ABC中,已知AB=5,E、F、P分別是AB、AC、BC邊上的點,設數學公式,將△ABC沿EF折起到△A1EF的位置,使二面角A1-EF-B的大小為數學公式,連接A1B、A1P(如圖2).
(1)求證:PF∥平面A1EB;
(2)若EF⊥平面A1EB,求x的值;
(3)當EF⊥平面A1EB時,求平面A1BP與平面A1EF所成銳二面角的余弦值.

查看答案和解析>>

如圖,已知四棱錐S-ABCD的底面是邊長為4的正方形,S在底面上的射影O落在正方形ABCD內,SO的長為3,O到AB,AD的距離分別為2和1,P是SC的中點.
(Ⅰ)求證:平面SOB⊥底面ABCD;
(Ⅱ)設Q是棱SA上的一點,若
AQ
=
3
4
AS
,求平面BPQ與底面ABCD所成的銳二面角余弦值的大。

查看答案和解析>>

如圖,已知四棱錐S-ABCD的底面是邊長為4的正方形,S在底面上的射影O落在正方形ABCD內,SO的長為3,O到AB,AD的距離分別為2和1,P是SC的中點.
(Ⅰ)求證:平面SOB⊥底面ABCD;
(Ⅱ)設Q是棱SA上的一點,若=,求平面BPQ與底面ABCD所成的銳二面角余弦值的大。

查看答案和解析>>

精英家教網已知四棱錐P-ABCD,底面是邊長為1的正方形,側棱PC長為2,且PC⊥底面ABCD,
E是側棱PC上的動點.
(Ⅰ) 求點C到平面PDB的距離;
(Ⅱ) 若點E為PC的中點,求平面ADE與平面ABE所成的銳二面角的大。

查看答案和解析>>

已知四棱錐P-ABCD,底面是邊長為1的正方形,側棱PC長為2,且PC⊥底面ABCD,
E是側棱PC上的動點.
(Ⅰ) 求點C到平面PDB的距離;
(Ⅱ) 若點E為PC的中點,
求平面ADE與平面ABE所成的銳二面角的大。

查看答案和解析>>

 

一:選擇題:BCAAD   CCCBA  CC

 

二:填空題:

20090109

三:解答題

17.解:(1)由已知

   ∴ 

   ∵  

∴CD⊥AB,在Rt△BCD中BC2=BD2+CD2,                                                  

    又CD2=AC2-AD2, 所以BC2=BD2+AC2-AD2=49,                                               

所以                                                                                    

(2)在△ABC中,   

            

        

     而   

如果,

    

                                                                   

                                  

18.解:(1)點A不在兩條高線上,

 不妨設AC邊上的高:,AB邊上的高:

所以AC,AB的方程為:,

,即

,

由此可得直線BC的方程為:

(2),

由到角公式得:,

同理可算,。

19.解:(1)令

   則,因,

故函數上是增函數,

時,,即

   (2)令

    則

    所以在(,―1)遞減,(―1,0)遞增,

(0,1)遞減,(1,)遞增。

處取得極小值,且

故存在,使原方程有4個不同實根。

20.解(1)連結FO,F是AD的中點,

*  OFAD,

EO平面ABCD

由三垂線定理,得EFAD,

AD//BC,

EFBC                          

連結FB,可求得FB=PF=,則EFPB,

PBBC=B,

 EF平面PBC。 

(2)連結BD,PD平面ABCD,過點E作EOBD于O,

連結AO,則EO//PD

且EO平面ABCD,所以AEO為異面直線PD、AE所成的角              

E是PB的中點,則O是BD的中點,且EO=PD=1

在Rt△EOA中,AO=,

   所以:異面直線PD與AE所成的角的大小為

(3)取PC的中點G,連結EG,FG,則EG是FG在平面PBC內的射影

* PD平面ABCD,

* PDBC,又DCBC,且PDDC=D,

BC平面PDC

* BCPC,

EG//BC,則EGPC,

FGPC

所以FGE是二面角F―PC―B的平面角                                   

在Rt△FEG中,EG=BC=1,GF=

,

所以二面角F―PC―B的大小為   

21.解(1), 

,

   ,令,

所以遞增

,可得實數的取值范圍為

(2)當時,

   所以:,

即為 

可化為

由題意:存在,時,

恒成立

,

只要

 

所以:,

,知

22.證明:(1)由已知得

  

(2)由(1)得

=

 


同步練習冊答案
久久精品免费一区二区视