解:[評析]當時.并沒有要求記特殊角三角函數值.所以題雖然不難.但會的人不多. 查看更多

 

題目列表(包括答案和解析)

已知函數=.

(Ⅰ)當時,求不等式 ≥3的解集;

(Ⅱ) 若的解集包含,求的取值范圍.

【命題意圖】本題主要考查含絕對值不等式的解法,是簡單題.

【解析】(Ⅰ)當時,=

≤2時,由≥3得,解得≤1;

當2<<3時,≥3,無解;

≥3時,由≥3得≥3,解得≥8,

≥3的解集為{|≤1或≥8};

(Ⅱ) ,

∈[1,2]時,==2,

,有條件得,即,

故滿足條件的的取值范圍為[-3,0]

 

查看答案和解析>>

當0<x≤時,4x<logax,則a的取值范圍是

(A)(0,)       (B)(,1)      (C)(1,)   (D)(,2)

【解析】當時,顯然不成立.若

時,,此時對數,解得,根據對數的圖象和性質可知,要使時恒成立,則有,如圖選B.

 

查看答案和解析>>

(本小題滿分12分)已知函數是定義在上的奇函數,且

(1)確定函數的解析式;

(2)用定義證明上是增函數;

(3)解不等式.

【解析】第一問利用函數的奇函數性質可知f(0)=0

結合條件,解得函數解析式

第二問中,利用函數單調性的定義,作差變形,定號,證明。

第三問中,結合第二問中的單調性,可知要是原式有意義的利用變量大,則函數值大的關系得到結論。

 

查看答案和解析>>

設點是拋物線的焦點,是拋物線上的個不同的點().

(1) 當時,試寫出拋物線上的三個定點、、的坐標,從而使得

;

(2)當時,若

求證:;

(3) 當時,某同學對(2)的逆命題,即:

“若,則.”

開展了研究并發現其為假命題.

請你就此從以下三個研究方向中任選一個開展研究:

① 試構造一個說明該逆命題確實是假命題的反例(本研究方向最高得4分);

② 對任意給定的大于3的正整數,試構造該假命題反例的一般形式,并說明你的理由(本研究方向最高得8分);

③ 如果補充一個條件后能使該逆命題為真,請寫出你認為需要補充的一個條件,并說明加上該條件后,能使該逆命題為真命題的理由(本研究方向最高得10分).

【評分說明】本小題若填空不止一個研究方向,則以實得分最高的一個研究方向的得分作為本小題的最終得分.

【解析】第一問利用拋物線的焦點為,設

分別過作拋物線的準線的垂線,垂足分別為.

由拋物線定義得到

第二問設,分別過作拋物線的準線垂線,垂足分別為.

由拋物線定義得

第三問中①取時,拋物線的焦點為,

分別過作拋物線的準線垂線,垂足分別為.由拋物線定義得

,不妨取;;

解:(1)拋物線的焦點為,設,

分別過作拋物線的準線的垂線,垂足分別為.由拋物線定義得

 

因為,所以

故可取滿足條件.

(2)設,分別過作拋物線的準線垂線,垂足分別為.

由拋物線定義得

   又因為

;

所以.

(3) ①取時,拋物線的焦點為,

,分別過作拋物線的準線垂線,垂足分別為.由拋物線定義得

,

,不妨取;;,

.

,,,是一個當時,該逆命題的一個反例.(反例不唯一)

② 設,分別過

拋物線的準線的垂線,垂足分別為

及拋物線的定義得

,即.

因為上述表達式與點的縱坐標無關,所以只要將這點都取在軸的上方,則它們的縱坐標都大于零,則

,

,所以.

(說明:本質上只需構造滿足條件且的一組個不同的點,均為反例.)

③ 補充條件1:“點的縱坐標)滿足 ”,即:

“當時,若,且點的縱坐標)滿足,則”.此命題為真.事實上,設

分別過作拋物線準線的垂線,垂足分別為,由

及拋物線的定義得,即,則

,

又由,所以,故命題為真.

補充條件2:“點與點為偶數,關于軸對稱”,即:

“當時,若,且點與點為偶數,關于軸對稱,則”.此命題為真.(證略)

 

查看答案和解析>>

已知,(其中

⑴求

⑵試比較的大小,并說明理由.

【解析】第一問中取,則;                         …………1分

對等式兩邊求導,得

,則得到結論

第二問中,要比較的大小,即比較:的大小,歸納猜想可得結論當時,

時,

時,;

猜想:當時,運用數學歸納法證明即可。

解:⑴取,則;                         …………1分

對等式兩邊求導,得

,則。       …………4分

⑵要比較的大小,即比較:的大小,

時,;

時,;

時,;                              …………6分

猜想:當時,,下面用數學歸納法證明:

由上述過程可知,時結論成立,

假設當時結論成立,即

時,

時結論也成立,

∴當時,成立。                          …………11分

綜上得,當時,;

時,

時, 

 

查看答案和解析>>


同步練習冊答案
久久精品免费一区二区视