題目列表(包括答案和解析)
(本小題滿分12分)
如圖,一個圓錐形的空杯子上面放著一個半球形
的冰淇淋,如果冰淇淋融化了,會溢出杯子嗎?
請用你的計算數據說明理由.
解:因為 ………………5分
………………10分
因為
所以,冰淇淋融化了,不會溢出杯子.
………………12分
已知函數,(
),
(1)若曲線與曲線
在它們的交點(1,c)處具有公共切線,求a,b的值
(2)當時,若函數
的單調區間,并求其在區間(-∞,-1)上的最大值。
【解析】(1),
∵曲線與曲線
在它們的交點(1,c)處具有公共切線
∴,
∴
(2)令,當
時,
令
,得
時,
的情況如下:
x |
|
|
|
|
|
|
+ |
0 |
- |
0 |
+ |
|
|
|
|
|
|
所以函數的單調遞增區間為
,
,單調遞減區間為
當,即
時,函數
在區間
上單調遞增,
在區間
上的最大值為
,
當且
,即
時,函數
在區間
內單調遞增,在區間
上單調遞減,
在區間
上的最大值為
當,即a>6時,函數
在區間
內單調遞贈,在區間
內單調遞減,在區間
上單調遞增。又因為
所以在區間
上的最大值為
。
函數有意義,需使,其定義域為
,排除C,D,又因為
,所以當
時函數為減函數,故選A. w.w.w.k.s.5.u.c.o.m
答案:A.
【命題立意】:本題考查了函數的圖象以及函數的定義域、值域、單調性等性質.本題的難點在于給出的函數比較復雜,需要對其先變形,再在定義域內對其進行考察其余的性質.
設A是由m×n個實數組成的m行n列的數表,滿足:每個數的絕對值不大于1,且所有數的和為零,記s(m,n)為所有這樣的數表構成的集合。
對于A∈S(m,n),記ri(A)為A的第ⅰ行各數之和(1≤ⅰ≤m),Cj(A)為A的第j列各數之和(1≤j≤n):
記K(A)為∣r1(A)∣,∣R2(A)∣,…,∣Rm(A)∣,∣C1(A)∣,∣C2(A)∣,…,∣Cn(A)∣中的最小值。
(1) 對如下數表A,求K(A)的值;
1 |
1 |
-0.8 |
0.1 |
-0.3 |
-1 |
(2)設數表A∈S(2,3)形如
1 |
1 |
c |
a |
b |
-1 |
求K(A)的最大值;
(3)給定正整數t,對于所有的A∈S(2,2t+1),求K(A)的最大值。
【解析】(1)因為,
所以
(2) 不妨設.由題意得
.又因為
,所以
,
于是,
,
所以,當
,且
時,
取得最大值1。
(3)對于給定的正整數t,任給數表如下,
|
|
… |
|
|
|
… |
|
任意改變A的行次序或列次序,或把A中的每一個數換成它的相反數,所得數表
,并且
,因此,不妨設
,
且。
由得定義知,
,
又因為
所以
所以,
對數表:
1 |
1 |
… |
1 |
|
… |
|
|
|
… |
|
-1 |
… |
-1 |
則且
,
綜上,對于所有的,
的最大值為
函數的反函數為
(A)
(B)
(C)
(D)
【解析】 因為所以
.由
得,
,所以
,所以反函數為
,選A.
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com