解:1)由.得 查看更多

 

題目列表(包括答案和解析)

解:因為有負根,所以在y軸左側有交點,因此

解:因為函數沒有零點,所以方程無根,則函數y=x+|x-c|與y=2沒有交點,由圖可知c>2


 13.證明:(1)令x=y=1,由已知可得f(1)=f(1×1)=f(1)f(1),所以f(1)=1或f(1)=0

若f(1)=0,f(0)=f(1×0)=f(1)f(0)=0,所以f(1)=f(0)與已知條件“”矛盾所以f(1)≠0,因此f(1)=1,所以f(1)-1=0,1是函數y=f(x)-1的零點

(2)因為f(1)=f[(-1)×(-1)]=f2(-1)=,所以f(-1)=±1,但若f(-1)=1,則f(-1)=f(1)與已知矛盾所以f(-1)不能等于1,只能等于-1。所以任x∈R,f(-x)=f(-1)f(x)=-f(x),因此函數是奇函數

數字1,2,3,4恰好排成一排,如果數字i(i=1,2,3,4)恰好出現在第i個位置上則稱有一個巧合,求巧合數的分布列。

查看答案和解析>>

解::因為,所以f(1)f(2)<0,因此f(x)在區間(1,2)上存在零點,又因為y=與y=-在(0,+)上都是增函數,因此在(0,+)上是增函數,所以零點個數只有一個方法2:把函數的零點個數個數問題轉化為判斷方程解的個數問題,近而轉化成判斷交點個數問題,在坐標系中畫出圖形


由圖看出顯然一個交點,因此函數的零點個數只有一個

袋中有50個大小相同的號牌,其中標著0號的有5個,標著n號的有n個(n=1,2,…9),現從袋中任取一球,求所取號碼的分布列,以及取得號碼為偶數的概率.

查看答案和解析>>

(1)設a>0,解關于y的不等式y2-2(
a
+
1
a
)y+1≤0
;
(2)對于任意給定的a≥2,由(1)所確定的y解集(用區間表示)記為I(a),我們規定:區間[m,n]的長度為n-m.如果I(a)的長度為r(a),試求當a取什么值時,r(a)取得最小值,并求r(a)的最小值及此時的I(a).

查看答案和解析>>

16.(2)解(1)當a=1,b=-2時,g(x)=f(x)-2,把f(x)圖象向下平移兩個單位就可得到g(x)圖象,

這時函數g(x)只有兩個零點,所以(1)不對

(2)若a=-1,-2<b<0,則把函數f(x)作關于x軸對稱圖象,然后向下平移不超過2個單位就可得到g(x)圖象,這時g(x)有超過2的零點

(3)當a<0時, y=af(x)根據定義可斷定是奇函數,如果b≠0,把奇函數y=af(x)圖象再向上(或向下)平移后才是y=g(x)=af(x)+b的圖象,那么肯定不會再關于原點對稱了,肯定不是奇函數;當b=0時才是奇函數,所以(3)不對。所以正確的只有(2)

為了考察高中生學習語文與數學之間的關系,在某中學學生中隨機地抽取了610名學生得到如下列表:

 語文

數學

及格

不及格

總計 

及格

310

142

452

不及格

94

64

158

總計

404

206

610

 由表中數據計算及的觀測值問在多大程度上可以認為高中生的語文與數學成績之間有關系?為什么?

查看答案和解析>>

16.(2)解(1)當a=1,b=-2時,g(x)=f(x)-2,把f(x)圖象向下平移兩個單位就可得到g(x)圖象,
這時函數g(x)只有兩個零點,所以(1)不對
(2)若a=-1,-2<b<0,則把函數f(x)作關于x軸對稱圖象,然后向下平移不超過2個單位就可得到g(x)圖象,這時g(x)有超過2的零點
(3)當a<0時, y=af(x)根據定義可斷定是奇函數,如果b≠0,把奇函數y=af(x)圖象再向上(或向下)平移后才是y=g(x)=af(x)+b的圖象,那么肯定不會再關于原點對稱了,肯定不是奇函數;當b=0時才是奇函數,所以(3)不對。所以正確的只有(2)
為了考察高中生學習語文與數學之間的關系,在某中學學生中隨機地抽取了610名學生得到如下列表:
 語文
數學
及格
不及格
總計 
及格
310
142
452
不及格
94
64
158
總計
404
206
610
 由表中數據計算及的觀測值問在多大程度上可以認為高中生的語文與數學成績之間有關系?為什么?

查看答案和解析>>


同步練習冊答案
久久精品免费一区二区视