由2)知. 查看更多

 

題目列表(包括答案和解析)

精英家教網已知,如圖:四邊形ABCD為矩形,PA⊥平面ABCD,M、N分別是AB、PC的中點,
(1)求證:直線MN⊥直線AB;
(2)若平面PDC與平面ABCD所成的二面角大小為θ,能否確定θ使直線MN是異面直線AB與PC的公垂線,若能確定,求出θ的值,若不能確定,說明理由.

查看答案和解析>>

由于衛生的要求游泳池要經常換水(進一些干凈的水同時放掉一些臟水),游泳池的水深經常變化,已知泰州某浴場的水深y(米)是時間t(0≤t≤24),(單位小時)的函數,記作y=f(t),下表是某日各時的水深數據經長期觀測的曲線y=f(t)可近似地看成函數y=Acosωt+b
t(時) 0 3 6 9 12 15 18 21 24
y(米) 2 5 2 0 15 20 249 2 151 199 2 5
(Ⅰ)根據以上數據,求出函數y=Acosωt+b的最小正周期T,振幅A及函數表達式;
(Ⅱ)依據規定,當水深大于2米時才對游泳愛好者開放,請依據(1)的結論,判斷一天內的上午8:00至晚上20:00之間,有多少時間可供游泳愛好者進行運動.

查看答案和解析>>

已知,f(x)=ax-lnx,g(x)=
-f(x)
x
,a∈R.
(1)當a=1時,討論f(x)的單調性、極值;
(2)當a=-1時,求證:g(x2)-f(x1)<2x1+
1
2
,?x1x2∈(0,+∞)
成立;
(3)是否存在實數a,使x∈(0,e]時,f(x)的最小值是3,若存在,求出a的值;若不存在,說明理由.

查看答案和解析>>

已知,p={x|x2-8x-20≤0},S={x||x-1|≤m}
(1)若p∪S⊆p,求實數m的取值范圍;
(2)是否存在實數m,使“x∈p”是“x∈S”的充要條件,若存在,求出m的取值范圍;若不存在,請說明理由.

查看答案和解析>>

由倍角公式cos2x=2cos2x-1,可知cos2x可以表示為cosx的二次多項式.對于cos3x,我們有
cos3x=cos(2x+x)
=cos2xcosx-sin2xsinx
=(2cos2x-1)cosx-2(sinxcosx)sinx
=2cos3x-cosx-2(1-cos2x)cosx
=4cos3x-3cosx
可見cos3x可以表示為cosx的三次多項式.一般地,存在一個n次多項式Pn(t),使得cosnx=Pn(cosx),這些多項式Pn(t)稱為切比雪夫多項式.
(I)求證:sin3x=3sinx-4sin3x;
(II)請求出P4(t),即用一個cosx的四次多項式來表示cos4x;
(III)利用結論cos3x=4cos3x-3cosx,求出sin18°的值.

查看答案和解析>>


同步練習冊答案
久久精品免费一区二区视