(Ⅰ)求..的值, 查看更多

 

題目列表(包括答案和解析)

20、(Ⅰ)求y=4x-2x+1的值域;
(Ⅱ)關于x的方程4x-2x+1+a=0有解,求實數a的取值范圍.

查看答案和解析>>

(Ⅰ)求極坐標方程ρsin2θ-2•cosθ=0表示的曲線的焦點坐標;
(Ⅱ)設直線l:
x=2+3t
y=3+4t
(t為參數)與題(Ⅰ)中的曲線交于A、B兩點,若P(2,3),求|PA|•|PB|的值.

查看答案和解析>>

(Ⅰ)求值:
16
81
-(
27
8
)
-
2
3
+(
3
-
2
)
0

(Ⅱ)已知:2a=5b=10,求
1
a
+
1
b
的值.

查看答案和解析>>

 
(Ⅰ)求 | z1| 的值以及z1的實部的取值范圍;(Ⅱ)若,求證:為純虛數

查看答案和解析>>

(Ⅰ)求y=4x-2x+1的值域;
(Ⅱ)關于x的方程4x-2x+1+a=0有解,求實數a的取值范圍.

查看答案和解析>>

一、選擇題(本大題共12小題,每小題4分,共48分)

1.B    2.A    3.B    4.A     5.D     6.C

7.C    8.A    9.B    10.D    11.D   12.B   

二、填空題(本大題共4小題,每小題4分,共16分)

13.   14.增函數的定義     15.與該平面平行的兩個平面    16.

三、解答題(本大題共3小題,每小題12分,共36分)

17.(本小題滿分12分)

解:(Ⅰ)由,可得

由題設可得     即

解得,

所以.┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄6分

(Ⅱ)由題意得,

所以

,得,

 

 

所以函數的單調遞增區間為.┄┄┄┄┄┄┄┄┄┄12分

18A. (本小題滿分12分)

解:(Ⅰ),

,

.┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄6分

(Ⅱ)根據計算結果,可以歸納出 .

時,,與已知相符,歸納出的公式成立.

假設當)時,公式成立,即,

那么,

所以,當時公式也成立.

綜上,對于任何都成立. ┄┄┄┄┄┄┄┄┄┄┄┄12分

18B. (本小題滿分12分)

解:(Ⅰ),因為,

所以

,解得

同理.┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄6分

(Ⅱ)根據計算結果,可以歸納出 .

時,,與已知相符,歸納出的公式成立.

假設當)時,公式成立,即.

可得,.

.

所以.

即當時公式也成立.

綜上,對于任何都成立. ┄┄┄┄┄┄┄┄┄┄┄12分

19A. (本小題滿分12分)

(Ⅰ)解:的定義域為,

的導數.

,解得;令,解得.

從而單調遞減,在單調遞增.

所以,當時,取得最小值. ┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄ 6分

(Ⅱ)依題意,得上恒成立,

即不等式對于恒成立.

,

.

時,因為

上的增函數,   所以 的最小值是,

從而的取值范圍是. ┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄12分

19B. (本小題滿分12分)

解:(Ⅰ)由于

時,,

,可得.

時,,

可知

所以函數的單調減區間為. ………………………………………………6分

(Ⅱ)設

時,,

,可得,即;

,可得.

可得為函數的單調增區間,為函數的單調減區間.

時,,

所以當時,

可得為函數的單調減區間.

所以函數的單調增區間為,單調減區間為.

函數的最大值為,

    要使不等式對一切恒成立,

對一切恒成立,

,

可得的取值范圍為. ………………………………………………12分

 


同步練習冊答案
久久精品免费一区二区视