C. 查看更多

 

題目列表(包括答案和解析)


C.選修4—4:坐標系與參數方程
(本小題滿分10分)
在極坐標系中,圓的方程為,以極點為坐標原點,極軸為軸的正半軸建立平面直角坐標系,直線的參數方程為為參數),判斷直線和圓的位置關系.

查看答案和解析>>

C選修4-4:坐標系與參數方程(本小題滿分10分)
在平面直角坐標系中,求過橢圓為參數)的右焦點且與直線為參數)平行的直線的普通方程。

查看答案和解析>>

C.(選修4—4:坐標系與參數方程)

在極坐標系中,圓的方程為,以極點為坐標原點,極軸為軸的正

半軸建立平面直角坐標系,直線的參數方程為為參數),求直線

得的弦的長度.

 

查看答案和解析>>

C(坐標系與參數方程選做題)已知極坐標的極點在直角坐標系的原點O處,極軸與x軸的正半軸重合,曲線C的參數方程為為參數),直線l的極坐標方程為.點P在曲線C上,則點P到直線l的距離的最小值為                

 

查看答案和解析>>

C.選修4-4:坐標系與參數方程

在直角坐標系中,已知曲線的參數方程是是參數),若以為極點,軸的正半軸為極軸,取與直角坐標系中相同的單位長度,建立極坐標系,求曲線的極坐標方程.

 

 

 

查看答案和解析>>

一、選擇題(本大題共12小題,每小題4分,共48分)

1.B    2.A    3.D      4.C     5.D    6.C

7.A    8.C    9.B      10.C    11.A   12.B   

二、填空題(本大題共4小題,每小題4分,共16分)

13.

14.

 

 

 

 

15. 增函數的定義

16. 與該平面平行的兩個平面

三、解答題(本大題共3小題,每小題12分,共36分)

17.(本小題滿分12分)

解:(Ⅰ)涉及兩個變量,年齡與脂肪含量.

因此選取年齡為自變量,脂肪含量為因變量

作散點圖,從圖中可看出具有相關關系.             

┄┄┄┄┄┄┄┄┄┄┄┄6分

(Ⅱ)的回歸直線方程為

.        

時,,

時,

所以歲和歲的殘差分別為.

┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄12分

18A. (本小題滿分12分)

證明:由于,,

所以只需證明

展開得,即

所以只需證

因為顯然成立,

所以.┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄12分

18B. (本小題滿分12分)

證明:(Ⅰ)因為,所以

由于函數上的增函數,

所以

同理,

兩式相加,得.┄┄┄┄┄┄┄┄┄┄┄┄6分

(Ⅱ)逆命題:

,則

用反證法證明

假設,那么

所以

這與矛盾.故只有,逆命題得證.

┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄12分

19A. (本小題滿分12分)

解:(Ⅰ)由于,且

所以當時,得,故

從而.┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄6分

(Ⅱ)數列不可能為等差數列,證明如下:

,

,,

若存在,使為等差數列,則,

,解得

于是,

這與為等差數列矛盾.所以,對任意,數列都不可能是等差數列.

┄┄┄┄┄┄┄┄┄┄┄┄12分

19B. (本小題滿分12分)

解:(Ⅰ),

.┄┄┄┄┄┄┄┄┄┄┄6分

(Ⅱ)由(Ⅰ)可得,

,

猜想:是公比為的等比數列.

證明如下:因為

,所以,

所以數列是首項為,公比為的等比數列.┄┄┄┄┄┄┄┄┄┄┄┄12分

 

 

 


同步練習冊答案
久久精品免费一区二区视