(Ⅰ)若.求證:,中命題的逆命題是否成立.并證明你的結論. 19A. 查看更多

 

題目列表(包括答案和解析)

(Ⅰ)已知函數f(x)=
x
x+1
.數列{an}滿足:an>0,a1=1,且
an+1
=f(
an
)
,記數列{bn}的前n項和為Sn,且Sn=
2
2
[
1
an
+(
2
+1)n]
.求數列{bn}的通項公式;并判斷b4+b6是否仍為數列{bn}中的項?若是,請證明;否則,說明理由.
(Ⅱ)設{cn}為首項是c1,公差d≠0的等差數列,求證:“數列{cn}中任意不同兩項之和仍為數列{cn}中的項”的充要條件是“存在整數m≥-1,使c1=md”.

查看答案和解析>>

判斷下列語句是否是命題,若是,判斷其真假:

(1)一個正整數不是合數就是質數;

(2)x+y是有理數,則x,y都是有理數;

(3)三角形中大角所對的邊大于小角所對的邊;

(4)求證:若x∈R,則方程x2+x+1=0無實根;

(5)x2-4x-7>0.

查看答案和解析>>

(Ⅰ)已知函數.數列滿足:,且,記數列的前項和為,且.求數列的通項公式;并判斷是否仍為數列中的項?若是,請證明;否則,說明理由.

(Ⅱ)設為首項是,公差的等差數列,求證:“數列中任意不同兩項之和仍為數列中的項”的充要條件是“存在整數,使”.

查看答案和解析>>

(Ⅰ)已知函數數學公式.數列{an}滿足:an>0,a1=1,且數學公式,記數列{bn}的前n項和為Sn,且數學公式.求數列{bn}的通項公式;并判斷b4+b6是否仍為數列{bn}中的項?若是,請證明;否則,說明理由.
(Ⅱ)設{cn}為首項是c1,公差d≠0的等差數列,求證:“數列{cn}中任意不同兩項之和仍為數列{cn}中的項”的充要條件是“存在整數m≥-1,使c1=md”.

查看答案和解析>>

(Ⅰ)已知函數f(x)=
x
x+1
.數列{an}滿足:an>0,a1=1,且
an+1
=f(
an
)
,記數列{bn}的前n項和為Sn,且Sn=
2
2
[
1
an
+(
2
+1)n]
.求數列{bn}的通項公式;并判斷b4+b6是否仍為數列{bn}中的項?若是,請證明;否則,說明理由.
(Ⅱ)設{cn}為首項是c1,公差d≠0的等差數列,求證:“數列{cn}中任意不同兩項之和仍為數列{cn}中的項”的充要條件是“存在整數m≥-1,使c1=md”.

查看答案和解析>>

一、選擇題(本大題共12小題,每小題4分,共48分)

1.B    2.A    3.D      4.C     5.D    6.C

7.A    8.C    9.B      10.C    11.A   12.B   

二、填空題(本大題共4小題,每小題4分,共16分)

13.

14.

 

 

 

 

15. 增函數的定義

16. 與該平面平行的兩個平面

三、解答題(本大題共3小題,每小題12分,共36分)

17.(本小題滿分12分)

解:(Ⅰ)涉及兩個變量,年齡與脂肪含量.

因此選取年齡為自變量,脂肪含量為因變量

作散點圖,從圖中可看出具有相關關系.             

┄┄┄┄┄┄┄┄┄┄┄┄6分

(Ⅱ)的回歸直線方程為

.        

時,,

時,

所以歲和歲的殘差分別為.

┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄12分

18A. (本小題滿分12分)

證明:由于,,

所以只需證明

展開得,即

所以只需證

因為顯然成立,

所以.┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄12分

18B. (本小題滿分12分)

證明:(Ⅰ)因為,所以

由于函數上的增函數,

所以

同理,

兩式相加,得.┄┄┄┄┄┄┄┄┄┄┄┄6分

(Ⅱ)逆命題:

,則

用反證法證明

假設,那么

所以

這與矛盾.故只有,逆命題得證.

┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄12分

19A. (本小題滿分12分)

解:(Ⅰ)由于,且

所以當時,得,故

從而.┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄6分

(Ⅱ)數列不可能為等差數列,證明如下:

,

,,

若存在,使為等差數列,則,

,解得

于是,

這與為等差數列矛盾.所以,對任意,數列都不可能是等差數列.

┄┄┄┄┄┄┄┄┄┄┄┄12分

19B. (本小題滿分12分)

解:(Ⅰ),

,.┄┄┄┄┄┄┄┄┄┄┄6分

(Ⅱ)由(Ⅰ)可得,

,

猜想:是公比為的等比數列.

證明如下:因為,

,所以

所以數列是首項為,公比為的等比數列.┄┄┄┄┄┄┄┄┄┄┄┄12分

 

 

 


同步練習冊答案
久久精品免费一区二区视