6.已知點和原點在直線的兩側.則實數的取值范圍是 查看更多

 

題目列表(包括答案和解析)

已知點(3,1)和原點(0,0)在直線3x-ay+1=0的兩側,則實數a的取值范圍是( )
A.(-∞,10)
B.(10,+∞)
C.(-∞,9)
D.(9,+∞)

查看答案和解析>>

已知點(3,1)和原點(0,0)在直線3x-ay+1=0的兩側,則實數a的取值范圍是( 。
A.(-∞,10)B.(10,+∞)C.(-∞,9)D.(9,+∞)

查看答案和解析>>

(2009•臺州一模)已知點(3,1)和原點(0,0)在直線3x-ay+1=0的兩側,則實數a的取值范圍是(  )

查看答案和解析>>

已知函數的圖象過坐標原點O,且在點處的切線的斜率是.

(Ⅰ)求實數的值; 

(Ⅱ)求在區間上的最大值;

(Ⅲ)對任意給定的正實數,曲線上是否存在兩點P、Q,使得是以O為直角頂點的直角三角形,且此三角形斜邊中點在軸上?說明理由.

【解析】第一問當時,,則

依題意得:,即    解得

第二問當時,,令,結合導數和函數之間的關系得到單調性的判定,得到極值和最值

第三問假設曲線上存在兩點P、Q滿足題設要求,則點P、Q只能在軸兩側。

不妨設,則,顯然

是以O為直角頂點的直角三角形,∴

    (*)若方程(*)有解,存在滿足題設要求的兩點P、Q;

若方程(*)無解,不存在滿足題設要求的兩點P、Q.

(Ⅰ)當時,,則。

依題意得:,即    解得

(Ⅱ)由(Ⅰ)知,

①當時,,令

變化時,的變化情況如下表:

0

0

+

0

單調遞減

極小值

單調遞增

極大值

單調遞減

,,!上的最大值為2.

②當時, .當時, ,最大值為0;

時, 上單調遞增。∴最大值為。

綜上,當時,即時,在區間上的最大值為2;

時,即時,在區間上的最大值為。

(Ⅲ)假設曲線上存在兩點P、Q滿足題設要求,則點P、Q只能在軸兩側。

不妨設,則,顯然

是以O為直角頂點的直角三角形,∴

    (*)若方程(*)有解,存在滿足題設要求的兩點P、Q;

若方程(*)無解,不存在滿足題設要求的兩點P、Q.

,則代入(*)式得:

,而此方程無解,因此。此時,

代入(*)式得:    即   (**)

 ,則

上單調遞增,  ∵     ∴,∴的取值范圍是

∴對于,方程(**)總有解,即方程(*)總有解。

因此,對任意給定的正實數,曲線上存在兩點P、Q,使得是以O為直角頂點的直角三角形,且此三角形斜邊中點在軸上

 

查看答案和解析>>

 

一、選擇題:

題號

1

2

3

4

5

6

7

8

9

10

答案

B

B

B

C

A

D

B

C

C

B

 

二、填空題:

題號

11

12

13

14

15

 

答案

 

1000

6ec8aac122bd4f6e

6ec8aac122bd4f6e

 

三、解答題:本大題共6小題,滿分80分.解答須寫出文字說明、證明過程和演算步驟.

16.(本小題滿分12分)

解:(1)由=,得:=,

              即:,     

        又∵0<6ec8aac122bd4f6e     ∴=6ec8aac122bd4f6e.             

   (2)直線6ec8aac122bd4f6e方程為:

                            ,

6ec8aac122bd4f6e到直線6ec8aac122bd4f6e的距離為:

              ∵

              ∴       ∴ 

              又∵0<6ec8aac122bd4f6e,        

∴sin>0,cos<0

              ∴ 

∴sin6ec8aac122bd4f6e-cos6ec8aac122bd4f6e=   

17.(本小題滿分12分)

解:(1)某同學被抽到的概率為

設有名男同學,則,男、女同學的人數分別為

(2)把名男同學和名女同學記為,則選取兩名同學的基本事件有種,其中有一名女同學的有

選出的兩名同學中恰有一名女同學的概率為

(3)

,

第二同學的實驗更穩定

                              

18.(本小題滿分14分)

解:(1)分別是棱中點   

平面

是棱的中點            

平面

平面平面

(2)  

同理

      

  

,       

,,    

 

19.(本小題滿分14分)

解:(1)由……①,得……②

②-①得:    

所以,求得     

(2)    

                                                     

 

 

20.(本小題滿分14分)

解:(1)由題設知:

得:

解得,橢圓的方程為

(2)

            

從而將求的最大值轉化為求的最大值

是橢圓上的任一點,設,則有

,

時,取最大值   的最大值為

 

21.(本小題滿分14分)

解:(1)由,,得,

所以,

(2)由題設得

對稱軸方程為,

由于上單調遞增,則有

(Ⅰ)當時,有

(Ⅱ)當時,

設方程的根為,

①若,則,有    解得

②若,即,有

          

由①②得 。

綜合(Ⅰ), (Ⅱ)有 

 


同步練習冊答案
久久精品免费一区二区视