而 所以左邊=右邊 16分 查看更多

 

題目列表(包括答案和解析)

已知函數的最小值為0,其中

(Ⅰ)求的值;

(Ⅱ)若對任意的成立,求實數的最小值;

(Ⅲ)證明).

【解析】(1)解: 的定義域為

,得

當x變化時,的變化情況如下表:

x

-

0

+

極小值

因此,處取得最小值,故由題意,所以

(2)解:當時,取,有,故時不合題意.當時,令,即

,得

①當時,,上恒成立。因此上單調遞減.從而對于任意的,總有,即上恒成立,故符合題意.

②當時,,對于,,故上單調遞增.因此當取時,,即不成立.

不合題意.

綜上,k的最小值為.

(3)證明:當n=1時,不等式左邊==右邊,所以不等式成立.

時,

                      

                      

在(2)中取,得 ,

從而

所以有

     

     

     

     

      

綜上,,

 

查看答案和解析>>

用數學歸納法證明等式:1·3·5+3·5·7+…+(2n-1)(2n+1)(2n+3)=n(n+2)·(2n2+4n-1)時,先算出n=1時,左邊=__________,右邊=__________,等式成立.

查看答案和解析>>

用數學歸納法證明等式:1·3·5+3·5·7+…+(2n-1)(2n+1)(2n+3)=n(n+2)·(2n2+4n-1)時,先算出n=1時,左邊=__________,右邊=__________,等式成立.

查看答案和解析>>

如圖,長方體中,底面是正方形,的中點,是棱上任意一點。

(Ⅰ)證明: ;

(Ⅱ)如果=2 ,=,, 求 的長。

 【解析】(Ⅰ)因底面是正方形,故,又側棱垂直底面,可得,而,所以,因,所以,又,所以 ;

(Ⅱ)因=2 ,=,,可得,,設,由,即,解得,即 的長為。

 

查看答案和解析>>

用數學歸納法證明1+2+3+…+n=(n∈N)的第二步應是;假設_______時等式成立,即_______,那么當_______時,左邊=1+2+…+=(1+2+…+_______)+_______=_______+_______=_______,右邊=_______,故左邊________右邊,這就是說_______.

查看答案和解析>>


同步練習冊答案
久久精品免费一区二区视