∴(x)的單調增區間為. 值域為 -----12分 查看更多

 

題目列表(包括答案和解析)

(本小題滿分12分)

已知向量,函數·

(1)求函數f(x)的單調遞增區間;

(2)如果△ABC的三邊a、b、c滿足b2=ac,且邊b所對的角為x,試求x的范圍及此時函

數f(x)的值域.

 

查看答案和解析>>

已知 
m
=(
3
sinx,cosx),
n
=(cosx,-cosx),x∈R,定義函數f(x)=
m
n
-
1
2

(1)求函數f(x)的最小正周期,值域,單調增區間.
(2)設△ABC的三內角A,B,C所對的邊分別為a、b、c,且c=
3
,f(C)=0,若向量
d
=(1,sinA)與 
e
=(2,sinB)共線,求邊a,b的值及△ABC的面積S?

查看答案和解析>>

已知 
m
=(
3
sinx,cosx),
n
=(cosx,-cosx),x∈R,定義函數f(x)=
m
n
-
1
2

(1)求函數f(x)的最小正周期,值域,單調增區間.
(2)設△ABC的三內角A,B,C所對的邊分別為a、b、c,且c=
3
,f(C)=0,若向量
d
=(1,sinA)與 
e
=(2,sinB)共線,求邊a,b的值及△ABC的面積S?

查看答案和解析>>

已知
m
=(
3
sinx,cosx),
n
=(cosx,-cosx),x∈R,定義函數f(x)=
m
n
-
1
2

(1) 求函數.f(x)的最小正周期,值域,單調增區間.
(2) 設△ABC的三內角A,B,C所對的邊分別為a、b、c,且c=
3
,f(C)=0,若
d
=(1,sinA)與
e
=(2,sinB)
共線,求a,b的值.

查看答案和解析>>

已知函數處取得極值2.

⑴ 求函數的解析式;

⑵ 若函數在區間上是單調函數,求實數m的取值范圍;

【解析】第一問中利用導數

又f(x)在x=1處取得極值2,所以,

所以

第二問中,

因為,又f(x)的定義域是R,所以由,得-1<x<1,所以f(x)在[-1,1]上單調遞增,在上單調遞減,當f(x)在區間(m,2m+1)上單調遞增,則有,得

解:⑴ 求導,又f(x)在x=1處取得極值2,所以,即,所以…………6分

⑵ 因為,又f(x)的定義域是R,所以由,得-1<x<1,所以f(x)在[-1,1]上單調遞增,在上單調遞減,當f(x)在區間(m,2m+1)上單調遞增,則有,得,                …………9分

當f(x)在區間(m,2m+1)上單調遞減,則有 

                                                …………12分

.綜上所述,當時,f(x)在(m,2m+1)上單調遞增,當時,f(x)在(m,2m+1)上單調遞減;則實數m的取值范圍是

 

查看答案和解析>>


同步練習冊答案
久久精品免费一区二区视