題目列表(包括答案和解析)
解:因為有負根,所以在y軸左側有交點,因此
解:因為函數沒有零點,所以方程無根,則函數y=x+|x-c|與y=2沒有交點,由圖可知c>2
13.證明:(1)令x=y=1,由已知可得f(1)=f(1×1)=f(1)f(1),所以f(1)=1或f(1)=0
若f(1)=0,f(0)=f(1×0)=f(1)f(0)=0,所以f(1)=f(0)與已知條件“”矛盾所以f(1)≠0,因此f(1)=1,所以f(1)-1=0,1是函數y=f(x)-1的零點
(2)因為f(1)=f[(-1)×(-1)]=f2(-1)=,所以f(-1)=±1,但若f(-1)=1,則f(-1)=f(1)與已知矛盾所以f(-1)不能等于1,只能等于-1。所以任x∈R,f(-x)=f(-1)f(x)=-f(x),因此函數是奇函數
數字1,2,3,4恰好排成一排,如果數字i(i=1,2,3,4)恰好出現在第i個位置上則稱有一個巧合,求巧合數的分布列。
解:能否投中,那得看拋物線與籃圈所在直線是否有交點。因為函數的零點是-2與4,籃圈所在直線x=5在4的右邊,拋物線又是開口向下的,所以投不中。
某城市出租汽車的起步價為10元,行駛路程不超出4km,則按10元的標準收租車費若行駛路程超出4km,則按每超出lkm加收2元計費(超出不足1km的部分按lkm計).從這個城市的民航機場到某賓館的路程為15km.某司機常駕車在機場與此賓館之間接送旅客,由于行車路線的不同以及途中停車時間要轉換成行車路程(這個城市規定,每停車5分鐘按lkm路程計費),這個司機一次接送旅客的行車路程ξ是一個隨機變量,
(1)他收旅客的租車費η是否也是一個隨機變量?如果是,找出租車費η與行車路程ξ的關系式;
(2)已知某旅客實付租車費38元,而出租汽車實際行駛了15km,問出租車在途中因故停車累計最多幾分鐘?這種情況下,停車累計時間是否也是一個隨機變量?
解析:依題意得f(x)的圖象關于直線x=1對稱,f(x+1)=-f(x-1),f(x+2)=-f(x),f(x+4)=-f(x+2)=f(x),即函數f(x)是以4為周期的函數.由f(x)在[3,5]上是增函數與f(x)的圖象關于直線x=1對稱得,f(x)在[-3,-1]上是減函數.又函數f(x)是以4為周期的函數,因此f(x)在[1,3]上是減函數,f(x)在[1,3]上的最大值是f(1),最小值是f(3).
答案:A
當今的時代是計算機時代,我們知道計算機裝置有一數據輸入口A和一個運算結果的輸出口
B.某同學編入下列運算程序將數據輸入且滿足以下性質:(1)從A輸入1時,從B得到;(2)從A輸入整數n(n≥2)時,在B得到的結果f(n)是將前一結果f(n-1)先乘以奇數2n-3,再除以奇數2n+1.試問:
(Ⅰ)從A輸入2,3,4時,從B分別得到什么數?
(Ⅱ)從A輸入1,2,3,……2002時,從B得到的各數之和是多少?并說明理由.
解答題:解答應寫出文字說明,證明過程或演算步驟.
設P(x1,y1),Q(x2,y2)是拋物線C:y2=2px(p>0)上相異兩點,且,直線PQ與x軸相交于E.
(Ⅰ)若P,Q到x軸的距離的積為4,求p的值;
(Ⅱ)若p為已知常數,在x軸上,是否存在異于E的一點F,使得直線PF與拋物線的另一交點為R,而直線RQ與x軸相交于T,且有,若存在,求出F點的坐標(用p表示),若不存在,說明理由.
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com