即時函數為增函數 --------....9分 查看更多

 

題目列表(包括答案和解析)

已知函數.(

(1)若在區間上單調遞增,求實數的取值范圍;

(2)若在區間上,函數的圖象恒在曲線下方,求的取值范圍.

【解析】第一問中,首先利用在區間上單調遞增,則在區間上恒成立,然后分離參數法得到,進而得到范圍;第二問中,在區間上,函數的圖象恒在曲線下方等價于在區間上恒成立.然后求解得到。

解:(1)在區間上單調遞增,

在區間上恒成立.  …………3分

,而當時,,故. …………5分

所以.                 …………6分

(2)令,定義域為

在區間上,函數的圖象恒在曲線下方等價于在區間上恒成立.   

        …………9分

① 若,令,得極值點,

,即時,在(,+∞)上有,此時在區間上是增函數,并且在該區間上有,不合題意;

,即時,同理可知,在區間上遞增,

,也不合題意;                     …………11分

② 若,則有,此時在區間上恒有,從而在區間上是減函數;

要使在此區間上恒成立,只須滿足,

由此求得的范圍是.        …………13分

綜合①②可知,當時,函數的圖象恒在直線下方.

 

查看答案和解析>>

已知函數處取得極值2.

⑴ 求函數的解析式;

⑵ 若函數在區間上是單調函數,求實數m的取值范圍;

【解析】第一問中利用導數

又f(x)在x=1處取得極值2,所以,

所以

第二問中,

因為,又f(x)的定義域是R,所以由,得-1<x<1,所以f(x)在[-1,1]上單調遞增,在上單調遞減,當f(x)在區間(m,2m+1)上單調遞增,則有,得

解:⑴ 求導,又f(x)在x=1處取得極值2,所以,即,所以…………6分

⑵ 因為,又f(x)的定義域是R,所以由,得-1<x<1,所以f(x)在[-1,1]上單調遞增,在上單調遞減,當f(x)在區間(m,2m+1)上單調遞增,則有,得,                …………9分

當f(x)在區間(m,2m+1)上單調遞減,則有 

                                                …………12分

.綜上所述,當時,f(x)在(m,2m+1)上單調遞增,當時,f(x)在(m,2m+1)上單調遞減;則實數m的取值范圍是

 

查看答案和解析>>

已知

(1)求函數上的最小值

(2)對一切的恒成立,求實數a的取值范圍

(3)證明對一切,都有成立

【解析】第一問中利用

時,單調遞減,在單調遞增,當,即時,,

第二問中,,則,

,單調遞增,,,單調遞減,,因為對一切,恒成立, 

第三問中問題等價于證明,

由(1)可知,的最小值為,當且僅當x=時取得

,,則,易得。當且僅當x=1時取得.從而對一切,都有成立

解:(1)時,單調遞減,在單調遞增,當,即時,,

                 …………4分

(2),則,

,單調遞增,,,單調遞減,,因為對一切,恒成立,                                             …………9分

(3)問題等價于證明,,

由(1)可知,的最小值為,當且僅當x=時取得

,,則,易得。當且僅當x=1時取得.從而對一切,都有成立

 

查看答案和解析>>

已知函數 R).

(Ⅰ)若 ,求曲線  在點  處的的切線方程;

(Ⅱ)若  對任意  恒成立,求實數a的取值范圍.

【解析】本試題主要考查了導數在研究函數中的運用。

第一問中,利用當時,

因為切點為(), 則,                 

所以在點()處的曲線的切線方程為:

第二問中,由題意得,即可。

Ⅰ)當時,

,                                  

因為切點為(), 則,                  

所以在點()處的曲線的切線方程為:.    ……5分

(Ⅱ)解法一:由題意得,.      ……9分

(注:凡代入特殊值縮小范圍的均給4分)

,           

因為,所以恒成立,

上單調遞增,                            ……12分

要使恒成立,則,解得.……15分

解法二:                 ……7分

      (1)當時,上恒成立,

上單調遞增,

.                  ……10分

(2)當時,令,對稱軸

上單調遞增,又    

① 當,即時,上恒成立,

所以單調遞增,

,不合題意,舍去  

②當時,, 不合題意,舍去 14分

綜上所述: 

 

查看答案和解析>>

設函數

(I)求的單調區間;

(II)當0<a<2時,求函數在區間上的最小值.

【解析】第一問定義域為真數大于零,得到.                            

,則,所以,得到結論。

第二問中, ().

.                          

因為0<a<2,所以,.令 可得

對參數討論的得到最值。

所以函數上為減函數,在上為增函數.

(I)定義域為.           ………………………1分

.                            

,則,所以.  ……………………3分          

因為定義域為,所以.                            

,則,所以

因為定義域為,所以.          ………………………5分

所以函數的單調遞增區間為

單調遞減區間為.                         ………………………7分

(II) ().

.                          

因為0<a<2,所以.令 可得.…………9分

所以函數上為減函數,在上為增函數.

①當,即時,            

在區間上,上為減函數,在上為增函數.

所以.         ………………………10分  

②當,即時,在區間上為減函數.

所以.               

綜上所述,當時,

時,

 

查看答案和解析>>


同步練習冊答案
久久精品免费一区二区视