題目列表(包括答案和解析)
已知函數.(
)
(1)若在區間
上單調遞增,求實數
的取值范圍;
(2)若在區間上,函數
的圖象恒在曲線
下方,求
的取值范圍.
【解析】第一問中,首先利用在區間
上單調遞增,則
在區間
上恒成立,然后分離參數法得到
,進而得到范圍;第二問中,在區間
上,函數
的圖象恒在曲線
下方等價于
在區間
上恒成立.然后求解得到。
解:(1)在區間
上單調遞增,
則在區間
上恒成立. …………3分
即,而當
時,
,故
.
…………5分
所以.
…………6分
(2)令,定義域為
.
在區間上,函數
的圖象恒在曲線
下方等價于
在區間
上恒成立.
∵ …………9分
① 若,令
,得極值點
,
,
當,即
時,在(
,+∞)上有
,此時
在區間
上是增函數,并且在該區間上有
,不合題意;
當,即
時,同理可知,
在區間
上遞增,
有,也不合題意;
…………11分
② 若,則有
,此時在區間
上恒有
,從而
在區間
上是減函數;
要使在此區間上恒成立,只須滿足
,
由此求得的范圍是
. …………13分
綜合①②可知,當時,函數
的圖象恒在直線
下方.
已知函數在
處取得極值2.
⑴ 求函數的解析式;
⑵ 若函數在區間
上是單調函數,求實數m的取值范圍;
【解析】第一問中利用導數
又f(x)在x=1處取得極值2,所以,
所以
第二問中,
因為,又f(x)的定義域是R,所以由
,得-1<x<1,所以f(x)在[-1,1]上單調遞增,在
上單調遞減,當f(x)在區間(m,2m+1)上單調遞增,則有
,得
解:⑴ 求導,又f(x)在x=1處取得極值2,所以
,即
,所以
…………6分
⑵ 因為,又f(x)的定義域是R,所以由
,得-1<x<1,所以f(x)在[-1,1]上單調遞增,在
上單調遞減,當f(x)在區間(m,2m+1)上單調遞增,則有
,得
, …………9分
當f(x)在區間(m,2m+1)上單調遞減,則有
得
…………12分
.綜上所述,當時,f(x)在(m,2m+1)上單調遞增,當
時,f(x)在(m,2m+1)上單調遞減;則實數m的取值范圍是
或
已知
(1)求函數在
上的最小值
(2)對一切的恒成立,求實數a的取值范圍
(3)證明對一切,都有
成立
【解析】第一問中利用
當
時,
在
單調遞減,在
單調遞增
,當
,即
時,
,
第二問中,,則
設
,
則,
單調遞增,
,
,
單調遞減,
,因為對一切
,
恒成立,
第三問中問題等價于證明,
,
由(1)可知,
的最小值為
,當且僅當x=
時取得
設,
,則
,易得
。當且僅當x=1時取得.從而對一切
,都有
成立
解:(1)當
時,
在
單調遞減,在
單調遞增
,當
,即
時,
,
…………4分
(2),則
設
,
則,
單調遞增,
,
,
單調遞減,
,因為對一切
,
恒成立,
…………9分
(3)問題等價于證明,
,
由(1)可知,
的最小值為
,當且僅當x=
時取得
設,
,則
,易得
。當且僅當x=1時取得.從而對一切
,都有
成立
已知函數 R).
(Ⅰ)若 ,求曲線
在點
處的的切線方程;
(Ⅱ)若 對任意
恒成立,求實數a的取值范圍.
【解析】本試題主要考查了導數在研究函數中的運用。
第一問中,利用當時,
.
因為切點為(
),
則
,
所以在點()處的曲線的切線方程為:
第二問中,由題意得,即
即可。
Ⅰ)當時,
.
,
因為切點為(),
則
,
所以在點()處的曲線的切線方程為:
. ……5分
(Ⅱ)解法一:由題意得,即
. ……9分
(注:凡代入特殊值縮小范圍的均給4分)
,
因為,所以
恒成立,
故在
上單調遞增,
……12分
要使恒成立,則
,解得
.……15分
解法二:
……7分
(1)當時,
在
上恒成立,
故在
上單調遞增,
即
.
……10分
(2)當時,令
,對稱軸
,
則在
上單調遞增,又
① 當,即
時,
在
上恒成立,
所以在
單調遞增,
即
,不合題意,舍去
②當時,
,
不合題意,舍去 14分
綜上所述:
設函數.
(I)求的單調區間;
(II)當0<a<2時,求函數在區間
上的最小值.
【解析】第一問定義域為真數大于零,得到.
.
令,則
,所以
或
,得到結論。
第二問中, (
).
.
因為0<a<2,所以,
.令
可得
.
對參數討論的得到最值。
所以函數在
上為減函數,在
上為增函數.
(I)定義域為. ………………………1分
.
令,則
,所以
或
. ……………………3分
因為定義域為,所以
.
令,則
,所以
.
因為定義域為,所以
. ………………………5分
所以函數的單調遞增區間為,
單調遞減區間為.
………………………7分
(II) (
).
.
因為0<a<2,所以,
.令
可得
.…………9分
所以函數在
上為減函數,在
上為增函數.
①當,即
時,
在區間上,
在
上為減函數,在
上為增函數.
所以. ………………………10分
②當,即
時,
在區間
上為減函數.
所以.
綜上所述,當時,
;
當時,
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com