解:①,又. 查看更多

 

題目列表(包括答案和解析)

解::因為,所以f(1)f(2)<0,因此f(x)在區間(1,2)上存在零點,又因為y=與y=-在(0,+)上都是增函數,因此在(0,+)上是增函數,所以零點個數只有一個方法2:把函數的零點個數個數問題轉化為判斷方程解的個數問題,近而轉化成判斷交點個數問題,在坐標系中畫出圖形


由圖看出顯然一個交點,因此函數的零點個數只有一個

袋中有50個大小相同的號牌,其中標著0號的有5個,標著n號的有n個(n=1,2,…9),現從袋中任取一球,求所取號碼的分布列,以及取得號碼為偶數的概率.

查看答案和解析>>

解:能否投中,那得看拋物線與籃圈所在直線是否有交點。因為函數的零點是-2與4,籃圈所在直線x=5在4的右邊,拋物線又是開口向下的,所以投不中。

某城市出租汽車的起步價為10元,行駛路程不超出4km,則按10元的標準收租車費若行駛路程超出4km,則按每超出lkm加收2元計費(超出不足1km的部分按lkm計).從這個城市的民航機場到某賓館的路程為15km.某司機常駕車在機場與此賓館之間接送旅客,由于行車路線的不同以及途中停車時間要轉換成行車路程(這個城市規定,每停車5分鐘按lkm路程計費),這個司機一次接送旅客的行車路程ξ是一個隨機變量,

(1)他收旅客的租車費η是否也是一個隨機變量?如果是,找出租車費η與行車路程ξ的關系式;

(2)已知某旅客實付租車費38元,而出租汽車實際行駛了15km,問出租車在途中因故停車累計最多幾分鐘?這種情況下,停車累計時間是否也是一個隨機變量?

查看答案和解析>>

數學公式,又對于任意x1、x2∈D,有f(x1x2)=f(x1)+f(x2).
(1)將D用區間表示;
(2)求證:f(1)=f(-1)=0;
(3)解不等式:f(x)≤0.

查看答案和解析>>

解析:由題意知

當-2≤x≤1時,f(x)=x-2,

當1<x≤2時,f(x)=x3-2,

又∵f(x)=x-2,f(x)=x3-2在定義域上都為增函數,

f(x)的最大值為f(2)=23-2=6.

答案:C

查看答案和解析>>

解析:依題意得f(x)的圖象關于直線x=1對稱,f(x+1)=-f(x-1),f(x+2)=-f(x),f(x+4)=-f(x+2)=f(x),即函數f(x)是以4為周期的函數.由f(x)在[3,5]上是增函數與f(x)的圖象關于直線x=1對稱得,f(x)在[-3,-1]上是減函數.又函數f(x)是以4為周期的函數,因此f(x)在[1,3]上是減函數,f(x)在[1,3]上的最大值是f(1),最小值是f(3).

答案:A

查看答案和解析>>


同步練習冊答案
久久精品免费一区二区视