題目列表(包括答案和解析)
已知數列滿足
,
(1)求證:數列是等比數列;
(2)求數列的通項和前n項和
.
【解析】第一問中,利用,得到
從而得證
第二問中,利用∴ ∴
分組求和法得到結論。
解:(1)由題得 ………4分
……………………5分
∴數列是以2為公比,2為首項的等比數列;
……………………6分
(2)∴
……………………8分
∴
……………………9分
∴
已知等比數列中,
,且
,公比
,(1)求
;(2)設
,求數列
的前
項和
【解析】第一問,因為由題設可知
又 故
或
,又由題設
從而
第二問中,
當時,
,
時
故時,
時,
分別討論得到結論。
由題設可知
又 故
或
,又由題設
從而……………………4分
(2)
當時,
,
時
……………………6分
故時,
……8分
時,
……………………10分
綜上可得
已知,設
和
是方程
的兩個根,不等式
對任意實數
恒成立;
函數
有兩個不同的零點.求使“P且Q”為真命題的實數
的取值范圍.
【解析】本試題主要考查了命題和函數零點的運用。由題設x1+x2=a,x1x2=-2,
∴|x1-x2|==
.
當a∈[1,2]時,的最小值為3. 當a∈[1,2]時,
的最小值為3.
要使|m-5|≤|x1-x2|對任意實數a∈[1,2]恒成立,只須|m-5|≤3,即2≤m≤8.
由已知,得f(x)=3x2+2mx+m+=0的判別式
Δ=4m2-12(m+)=4m2-12m-16>0,
得m<-1或m>4.
可得到要使“P∧Q”為真命題,只需P真Q真即可。
解:由題設x1+x2=a,x1x2=-2,
∴|x1-x2|==
.
當a∈[1,2]時,的最小值為3.
要使|m-5|≤|x1-x2|對任意實數a∈[1,2]恒成立,只須|m-5|≤3,即2≤m≤8.
由已知,得f(x)=3x2+2mx+m+=0的判別式
Δ=4m2-12(m+)=4m2-12m-16>0,
得m<-1或m>4.
綜上,要使“P∧Q”為真命題,只需P真Q真,即
解得實數m的取值范圍是(4,8]
已知橢圓的離心率為
,以原點為圓心,橢圓的短半軸長為半徑的圓與直線
相切.
(I)求橢圓的方程;
(II)若過點(2,0)的直線與橢圓
相交于兩點
,設
為橢圓上一點,且滿足
(O為坐標原點),當
<
時,求實數
的取值范圍.
【解析】本試題主要考查了橢圓的方程以及直線與橢圓的位置關系的運用。
第一問中,利用
第二問中,利用直線與橢圓聯系,可知得到一元二次方程中,可得k的范圍,然后利用向量的
<
不等式,表示得到t的范圍。
解:(1)由題意知
如圖,已知直線(
)與拋物線
:
和圓
:
都相切,
是
的焦點.
(Ⅰ)求與
的值;
(Ⅱ)設是
上的一動點,以
為切點作拋物線
的切線
,直線
交
軸于點
,以
、
為鄰邊作平行四邊形
,證明:點
在一條定直線上;
(Ⅲ)在(Ⅱ)的條件下,記點所在的定直線為
, 直線
與
軸交點為
,連接
交拋物線
于
、
兩點,求△
的面積
的取值范圍.
【解析】第一問中利用圓:
的圓心為
,半徑
.由題設圓心到直線
的距離
.
即,解得
(
舍去)
設與拋物線的相切點為
,又
,得
,
.
代入直線方程得:,∴
所以
,
第二問中,由(Ⅰ)知拋物線方程為
,焦點
. ………………(2分)
設,由(Ⅰ)知以
為切點的切線
的方程為
.
令,得切線
交
軸的
點坐標為
所以
,
, ∵四邊形FAMB是以FA、FB為鄰邊作平行四邊形
∴ 因為
是定點,所以點
在定直線
第三問中,設直線,代入
得
結合韋達定理得到。
解:(Ⅰ)由已知,圓:
的圓心為
,半徑
.由題設圓心到直線
的距離
.
即,解得
(
舍去). …………………(2分)
設與拋物線的相切點為
,又
,得
,
.
代入直線方程得:,∴
所以
,
.
……(2分)
(Ⅱ)由(Ⅰ)知拋物線方程為
,焦點
. ………………(2分)
設,由(Ⅰ)知以
為切點的切線
的方程為
.
令,得切線
交
軸的
點坐標為
所以
,
, ∵四邊形FAMB是以FA、FB為鄰邊作平行四邊形,
∴ 因為
是定點,所以點
在定直線
上.…(2分)
(Ⅲ)設直線,代入
得
, ……)得
,
…………………………… (2分)
,
.
△
的面積
范圍是
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com