題目列表(包括答案和解析)
已知函數 R).
(Ⅰ)若 ,求曲線
在點
處的的切線方程;
(Ⅱ)若 對任意
恒成立,求實數a的取值范圍.
【解析】本試題主要考查了導數在研究函數中的運用。
第一問中,利用當時,
.
因為切點為(
),
則
,
所以在點()處的曲線的切線方程為:
第二問中,由題意得,即
即可。
Ⅰ)當時,
.
,
因為切點為(),
則
,
所以在點()處的曲線的切線方程為:
. ……5分
(Ⅱ)解法一:由題意得,即
. ……9分
(注:凡代入特殊值縮小范圍的均給4分)
,
因為,所以
恒成立,
故在
上單調遞增,
……12分
要使恒成立,則
,解得
.……15分
解法二:
……7分
(1)當時,
在
上恒成立,
故在
上單調遞增,
即
.
……10分
(2)當時,令
,對稱軸
,
則在
上單調遞增,又
① 當,即
時,
在
上恒成立,
所以在
單調遞增,
即
,不合題意,舍去
②當時,
,
不合題意,舍去 14分
綜上所述:
某省環保研究所對市中心每天環境放射性污染情況進行調查研究后,發現一天中環境綜合放射性污染指數與時刻
(時) 的關系為
,其中
是與氣象有關的參數,且
.
(1)令,
,寫出該函數的單調區間,并選擇其中一種情形進行證明;
(2)若用每天的最大值作為當天的綜合放射性污染指數,并記作
,求
;
(3)省政府規定,每天的綜合放射性污染指數不得超過2,試問目前市中心的綜合放射性污染指數是否超標?
【解析】第一問利用定義法求證單調性,并判定結論。
第二問(2)由函數的單調性知,
∴,即t的取值范圍是
.
當時,記
則
∵在
上單調遞減,在
上單調遞增,
第三問因為當且僅當時,
.
故當時不超標,當
時超標.
設橢圓 :
(
)的一個頂點為
,
,
分別是橢圓的左、右焦點,離心率
,過橢圓右焦點
的直線
與橢圓
交于
,
兩點.
(1)求橢圓的方程;
(2)是否存在直線 ,使得
,若存在,求出直線
的方程;若不存在,說明理由;
【解析】本試題主要考查了橢圓的方程的求解,以及直線與橢圓的位置關系的運用。(1)中橢圓的頂點為,即
又因為
,得到
,然后求解得到橢圓方程(2)中,對直線分為兩種情況討論,當直線斜率存在時,當直線斜率不存在時,聯立方程組,結合
得到結論。
解:(1)橢圓的頂點為,即
,解得
,
橢圓的標準方程為
--------4分
(2)由題可知,直線與橢圓必相交.
①當直線斜率不存在時,經檢驗不合題意. --------5分
②當直線斜率存在時,設存在直線為
,且
,
.
由得
, ----------7分
,
,
=
所以,
----------10分
故直線的方程為
或
即或
已知遞增等差數列滿足:
,且
成等比數列.
(1)求數列的通項公式
;
(2)若不等式對任意
恒成立,試猜想出實數
的最小值,并證明.
【解析】本試題主要考查了數列的通項公式的運用以及數列求和的運用。第一問中,利用設數列公差為
,
由題意可知,即
,解得d,得到通項公式,第二問中,不等式等價于
,利用當
時,
;當
時,
;而
,所以猜想,
的最小值為
然后加以證明即可。
解:(1)設數列公差為
,由題意可知
,即
,
解得或
(舍去). …………3分
所以,. …………6分
(2)不等式等價于,
當時,
;當
時,
;
而,所以猜想,
的最小值為
. …………8分
下證不等式對任意
恒成立.
方法一:數學歸納法.
當時,
,成立.
假設當時,不等式
成立,
當時,
,
…………10分
只要證 ,只要證
,
只要證 ,只要證
,
只要證 ,顯然成立.所以,對任意
,不等式
恒成立.…14分
方法二:單調性證明.
要證
只要證 ,
設數列的通項公式
, …………10分
, …………12分
所以對,都有
,可知數列
為單調遞減數列.
而,所以
恒成立,
故的最小值為
.
1 |
2 |
1 |
2 |
1 |
2 |
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com