解析 (1)由題意得sinx-cosx>0即. 查看更多

 

題目列表(包括答案和解析)

已知正數數列{an }中,a1 =2.若關于x的方程 ()對任意自然數n都有相等的實根.

(1)求a2 ,a3的值;

(2)求證

【解析】(1)中由題意得△,即,進而可得,. 

(2)中由于,所以,因為,所以數列是以為首項,公比為2的等比數列,知數列是以為首項,公比為的等比數列,利用裂項求和得到不等式的證明。

(1)由題意得△,即,進而可得   

(2)由于,所以,因為,所以數列是以為首項,公比為2的等比數列,知數列是以為首項,公比為的等比數列,于是

,

所以

 

查看答案和解析>>

在復平面內, 是原點,向量對應的復數是=2+i。

(Ⅰ)如果點A關于實軸的對稱點為點B,求向量對應的復數

(Ⅱ)復數,對應的點C,D。試判斷A、B、C、D四點是否在同一個圓上?并證明你的結論。

【解析】第一問中利用復數的概念可知得到由題意得,A(2,1)  ∴B(2,-1)   ∴  =(0,-2) ∴=-2i  ∵ (2+i)(-2i)=2-4i,      ∴  =

第二問中,由題意得,=(2,1)  ∴

同理,所以A、B、C、D四點到原點O的距離相等,

∴A、B、C、D四點在以O為圓心,為半徑的圓上

(Ⅰ)由題意得,A(2,1)  ∴B(2,-1)   ∴  =(0,-2) ∴=-2i     3分

     ∵ (2+i)(-2i)=2-4i,      ∴  =                 2分

(Ⅱ)A、B、C、D四點在同一個圓上。                              2分

證明:由題意得,=(2,1)  ∴

  同理,所以A、B、C、D四點到原點O的距離相等,

∴A、B、C、D四點在以O為圓心,為半徑的圓上

 

查看答案和解析>>

設函數f(x)=lnxgx)=ax+,函數f(x)的圖像與x軸的交點也在函數g(x)的圖像上,且在此點處f(x)與g(x)有公切線.[來源:學。科。網]

(Ⅰ)求a、b的值; 

(Ⅱ)設x>0,試比較f(x)與g(x)的大小.[來源:學,科,網Z,X,X,K]

【解析】第一問解:因為f(x)=lnx,gx)=ax+

則其導數為

由題意得,

第二問,由(I)可知,令。

,  …………8分

是(0,+∞)上的減函數,而F(1)=0,            …………9分

∴當時,,有;當時,,有;當x=1時,,有

解:因為f(x)=lnx,gx)=ax+

則其導數為

由題意得,

(11)由(I)可知,令。

,  …………8分

是(0,+∞)上的減函數,而F(1)=0,            …………9分

∴當時,,有;當時,,有;當x=1時,,有

 

查看答案和解析>>

 D

[解析] 依題意得0<a<1,于是由f(1-)>1得loga(1-)>logaa,0<1-<a,由此解得1<x<,因此不等式f(1-)>1的解集是(1,),選D.

查看答案和解析>>

設A是由m×n個實數組成的m行n列的數表,滿足:每個數的絕對值不大于1,且所有數的和為零,記s(m,n)為所有這樣的數表構成的集合。

對于A∈S(m,n),記ri(A)為A的第ⅰ行各數之和(1≤ⅰ≤m),Cj(A)為A的第j列各數之和(1≤j≤n):

記K(A)為∣r1(A)∣,∣R2(A)∣,…,∣Rm(A)∣,∣C1(A)∣,∣C2(A)∣,…,∣Cn(A)∣中的最小值。

(1)   對如下數表A,求K(A)的值;

1

1

-0.8

0.1

-0.3

-1

 

(2)設數表A∈S(2,3)形如

1

1

c

a

b

-1

 

求K(A)的最大值;

(3)給定正整數t,對于所有的A∈S(2,2t+1),求K(A)的最大值。

【解析】(1)因為,

所以

(2)  不妨設.由題意得.又因為,所以,

于是,

    

所以,當,且時,取得最大值1。

(3)對于給定的正整數t,任給數表如下,

任意改變A的行次序或列次序,或把A中的每一個數換成它的相反數,所得數表

,并且,因此,不妨設,

得定義知,,

又因為

所以

     

     

所以,

對數表

1

1

1

-1

-1

 

綜上,對于所有的,的最大值為

 

查看答案和解析>>


同步練習冊答案
久久精品免费一区二区视