題目列表(包括答案和解析)
已知函數,
.
(1)設是函數
的一個零點,求
的值;
(2)求函數的單調遞增區間.
【解析】第一問利用題設知.因為
是函數
的一個零點,所以
即
(
所以
第二問
當,即
(
)時,
函數是增函數,
故函數的單調遞增區間是
(
)
已知向量=(
),
=(
,
),其中(
).函數
,其圖象的一條對稱軸為
.
(I)求函數的表達式及單調遞增區間;
(Ⅱ)在△ABC中,a、b、c分別為角A、B、C的對邊,S為其面積,若=1,b=l,S△ABC=
,求a的值.
【解析】第一問利用向量的數量積公式表示出,然后利用
得到
,從而得打解析式。第二問中,利用第一問的結論,表示出A,結合正弦面積公式和余弦定理求解a的值。
解:因為
由余弦定理得,……11分故
已知,函數
(1)當時,求函數
在點(1,
)的切線方程;
(2)求函數在[-1,1]的極值;
(3)若在上至少存在一個實數x0,使
>g(xo)成立,求正實數
的取值范圍。
【解析】本試題中導數在研究函數中的運用。(1)中,那么當
時,
又
所以函數
在點(1,
)的切線方程為
;(2)中令
有
對a分類討論,和
得到極值。(3)中,設
,
,依題意,只需
那么可以解得。
解:(Ⅰ)∵ ∴
∴ 當時,
又
∴ 函數在點(1,
)的切線方程為
--------4分
(Ⅱ)令 有
①
當即
時
|
(-1,0) |
0 |
(0, |
|
( |
|
+ |
0 |
- |
0 |
+ |
|
|
極大值 |
|
極小值 |
|
故的極大值是
,極小值是
②
當即
時,
在(-1,0)上遞增,在(0,1)上遞減,則
的極大值為
,無極小值。
綜上所述 時,極大值為
,無極小值
時 極大值是
,極小值是
----------8分
(Ⅲ)設,
對求導,得
∵,
∴ 在區間
上為增函數,則
依題意,只需,即
解得 或
(舍去)
則正實數的取值范圍是(
,
)
設函數.
(Ⅰ) 當時,求
的單調區間;
(Ⅱ) 若在
上的最大值為
,求
的值.
【解析】第一問中利用函數的定義域為(0,2),
.
當a=1時,所以
的單調遞增區間為(0,
),單調遞減區間為(
,2);
第二問中,利用當時,
>0, 即
在
上單調遞增,故
在
上的最大值為f(1)=a 因此a=1/2.
解:函數的定義域為(0,2),
.
(1)當時,
所以
的單調遞增區間為(0,
),單調遞減區間為(
,2);
(2)當時,
>0, 即
在
上單調遞增,故
在
上的最大值為f(1)=a 因此a=1/2.
(本小題滿分12分)已知函數
(I)若函數在區間
上存在極值,求實數a的取值范圍;
(II)當時,不等式
恒成立,求實數k的取值范圍.
(Ⅲ)求證:解:(1),其定義域為
,則
令
,
則,
當時,
;當
時,
在(0,1)上單調遞增,在
上單調遞減,
即當時,函數
取得極大值. (3分)
函數
在區間
上存在極值,
,解得
(4分)
(2)不等式,即
令
(6分)
令,則
,
,即
在
上單調遞增, (7分)
,從而
,故
在
上單調遞增, (7分)
(8分)
(3)由(2)知,當時,
恒成立,即
,
令,則
, (9分)
(10分)
以上各式相加得,
即,
即
(12分)
。
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com