題目列表(包括答案和解析)
已知在中,
,
,
,解這個三角形;
【解析】本試題主要考查了正弦定理的運用。由正弦定理得到:,然后又
又再又
得到c。
解:由正弦定理得到:
又
……4分
又 ……8分
又
在中,
,分別是角
所對邊的長,
,且
(1)求的面積;
(2)若,求角C.
【解析】第一問中,由又∵
∴
∴
的面積為
第二問中,∵a =7 ∴c=5由余弦定理得:得到b的值,然后又由余弦定理得:
又C為內角 ∴
解:(1) ………………2分
又∵∴
……………………4分
∴的面積為
……………………6分
(2)∵a =7 ∴c=5 ……………………7分
由余弦定理得:
∴
……………………9分
又由余弦定理得:
又C為內角 ∴
……………………12分
另解:由正弦定理得: ∴
又
∴
如圖,測量河對岸的塔高時,可以選與塔底
在同一水平面內的兩個測點
.現測得
,并在點
測得塔頂
的仰角為
,
求塔高
(精確到
,
)
【解析】本試題主要考查了解三角形的運用,利用正弦定理在中,得到
,然后在
中,利用正切值可知
解:在中,
由正弦定理得:,所以
在中,
在△ABC中,為三個內角
為三條邊,
且
(I)判斷△ABC的形狀;
(II)若,求
的取值范圍.
【解析】本題主要考查正余弦定理及向量運算
第一問利用正弦定理可知,邊化為角得到
所以得到B=2C,然后利用內角和定理得到三角形的形狀。
第二問中,
得到。
(1)解:由及正弦定理有:
∴B=2C,或B+2C,若B=2C,且
,∴
,
;∴B+2C
,則A=C,∴
是等腰三角形。
(2)
如圖,邊長為2的正方形ABCD,E是BC的中點,沿AE,DE將折起,使得B與C重合于O.
(Ⅰ)設Q為AE的中點,證明:QDAO;
(Ⅱ)求二面角O—AE—D的余弦值.
【解析】第一問中,利用線線垂直,得到線面垂直,然后利用性質定理得到線線垂直。取AO中點M,連接MQ,DM,由題意可得:AOEO, DO
EO,
AO=DO=2.AODM
因為Q為AE的中點,所以MQ//E0,MQAO
AO平面DMQ,AO
DQ
第二問中,作MNAE,垂足為N,連接DN
因為AOEO, DO
EO,EO
平面AOD,所以EO
DM
,因為AODM ,DM
平面AOE
因為MNAE,DN
AE,
DNM就是所求的DM=
,MN=
,DN=
,COS
DNM=
(1)取AO中點M,連接MQ,DM,由題意可得:AOEO, DO
EO,
AO=DO=2.AODM
因為Q為AE的中點,所以MQ//E0,MQAO
AO平面DMQ,AO
DQ
(2)作MNAE,垂足為N,連接DN
因為AOEO, DO
EO,EO
平面AOD,所以EO
DM
,因為AODM ,DM
平面AOE
因為MNAE,DN
AE,
DNM就是所求的DM=
,MN=
,DN=
,COS
DNM=
二面角O-AE-D的平面角的余弦值為
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com