題目列表(包括答案和解析)
設f (x)=sin 2x+(sin x-cos x)(sin x+cos x),其中x∈R.
(Ⅰ) 該函數的圖象可由
的圖象經過怎樣的平移和伸縮變換得到?
(Ⅱ)若f (θ)=,其中
,求cos(θ+
)的值;
【解析】第一問中,
即變換分為三步,①把函數
的圖象向右平移
,得到函數
的圖象;
②令所得的圖象上各點的縱坐標不變,把橫坐標縮短到原來的倍,得到函數
的圖象;
③令所得的圖象上各點的橫坐標不變,把縱坐標伸長到原來的2倍,得到函數的圖象;
第二問中因為,所以
,則
,又
,
,從而
進而得到結論。
(Ⅰ) 解:
即。…………………………………3分
變換的步驟是:
①把函數的圖象向右平移
,得到函數
的圖象;
②令所得的圖象上各點的縱坐標不變,把橫坐標縮短到原來的倍,得到函數
的圖象;
③令所得的圖象上各點的橫坐標不變,把縱坐標伸長到原來的2倍,得到函數的圖象;…………………………………3分
(Ⅱ) 解:因為,所以
,則
,又
,
,從而
……2分
(1)當時,
;…………2分
(2)當時;
|
將函數f(x)=sin2x+1的圖象按向量平移得到
的圖象,則
=________.(寫出一個符合條件的向量.即可)
設函數f(x)=a2x2(a>0),g(x)=blnx.
(1)將函數y=f(x)圖象向右平移一個單位即可得到函數y=φ(x)的圖象,試寫出y=φ(x)的解析式及值域;
(2)關于x的不等式(x-1)2>f(x)的解集中的整數恰有3個,求實數a的取值范圍;
(3)對于函數f(x)與g(x)定義域上的任意實數x,若存在常數k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱直線y=kx+m為函數f(x)與g(x)的“分界線”.設a=,b=e,試探究f(x)與g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請說明理由.
設函數
f(x)=a2x2(a>0),g(x)=blnx.(1)
將函數y=f(x)圖象向右平移一個單位即可得到函數y=φ(x)的圖象,試寫出y=φ(x)的解析式及值域;(2)
關于x的不等式(x-1)2>f(x)的解集中的整數恰有3個,求實數a的取值范圍;(3)
對于函數f(x)與g(x)定義域上的任意實數x,若存在常數k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱直線y=kx+m為函數f(x)與g(x)的“分界線”.設湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com