=1 即.則 查看更多

 

題目列表(包括答案和解析)

f (x)=sin 2x(sin x-cos x)(sin x+cos x),其中x∈R.

(Ⅰ) 該函數的圖象可由 的圖象經過怎樣的平移和伸縮變換得到?

(Ⅱ)若f (θ)=,其中,求cos(θ)的值;

【解析】第一問中,

變換分為三步,①把函數的圖象向右平移,得到函數的圖象;

②令所得的圖象上各點的縱坐標不變,把橫坐標縮短到原來的倍,得到函數的圖象;

③令所得的圖象上各點的橫坐標不變,把縱坐標伸長到原來的2倍,得到函數的圖象;

第二問中因為,所以,則,又 ,,從而

進而得到結論。

(Ⅰ) 解:

。…………………………………3

變換的步驟是:

①把函數的圖象向右平移,得到函數的圖象;

②令所得的圖象上各點的縱坐標不變,把橫坐標縮短到原來的倍,得到函數的圖象;

③令所得的圖象上各點的橫坐標不變,把縱坐標伸長到原來的2倍,得到函數的圖象;…………………………………3

(Ⅱ) 解:因為,所以,則,又 ,,從而……2

(1)當時,;…………2

(2)當時;

 

查看答案和解析>>

設函數f(x)=a2x2(a>0),g(x)=blnx.

(Ⅰ)將函數y=f(x)圖象向右平移一個單位即可得到函數y=φ(x)的圖象,試寫出y=φ(x)的解析式及值域;

(Ⅱ)關于x的不等式(x-1)2>f(x)的解集中的整數恰有3個,求實數a的取值范圍;

(Ⅲ)對于函數f(x)與g(x)定義域上的任意實數x,若存在常數k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱直線y=kx+m為函數f(x)與g(x)的“分界線”.設a=,b=e,試探究f(x)與g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請說明理由.

查看答案和解析>>

將函數f(x)=sin2x+1的圖象按向量平移得到的圖象,則=________.(寫出一個符合條件的向量.即可)

查看答案和解析>>

設函數f(x)=a2x2(a>0),g(x)=blnx.

(1)將函數y=f(x)圖象向右平移一個單位即可得到函數y=φ(x)的圖象,試寫出y=φ(x)的解析式及值域;

(2)關于x的不等式(x-1)2>f(x)的解集中的整數恰有3個,求實數a的取值范圍;

(3)對于函數f(x)與g(x)定義域上的任意實數x,若存在常數k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱直線y=kx+m為函數f(x)與g(x)的“分界線”.設a=,b=e,試探究f(x)與g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請說明理由.

查看答案和解析>>

設函數f(x)a2x2(a0),g(x)blnx

(1)將函數yf(x)圖象向右平移一個單位即可得到函數yφ(x)的圖象,試寫出yφ(x)的解析式及值域;

(2)關于x的不等式(x1)2f(x)的解集中的整數恰有3個,求實數a的取值范圍;

(3)對于函數f(x)g(x)定義域上的任意實數x,若存在常數k,m,使得f(x)kxmg(x)kxm都成立,則稱直線ykxm為函數f(x)g(x)的“分界線”.設be,試探究f(x)g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請說明理由.

查看答案和解析>>


同步練習冊答案
久久精品免费一区二区视