解:原不等式等價于3×4x>2×6x>()x=()x,x<1 查看更多

 

題目列表(包括答案和解析)

已知函數其中為自然對數的底數, .(Ⅰ)設,求函數的最值;(Ⅱ)若對于任意的,都有成立,求的取值范圍.

【解析】第一問中,當時,,.結合表格和導數的知識判定單調性和極值,進而得到最值。

第二問中,∵,,      

∴原不等式等價于:,

, 亦即

分離參數的思想求解參數的范圍

解:(Ⅰ)當時,,

上變化時,,的變化情況如下表:

 

 

1/e

時,

(Ⅱ)∵,,      

∴原不等式等價于:,

, 亦即

∴對于任意的,原不等式恒成立,等價于恒成立,

∵對于任意的時, (當且僅當時取等號).

∴只需,即,解之得.

因此,的取值范圍是

 

查看答案和解析>>

已知遞增等差數列滿足:,且成等比數列.

(1)求數列的通項公式

(2)若不等式對任意恒成立,試猜想出實數的最小值,并證明.

【解析】本試題主要考查了數列的通項公式的運用以及數列求和的運用。第一問中,利用設數列公差為,

由題意可知,即,解得d,得到通項公式,第二問中,不等式等價于,利用當時,;當時,;而,所以猜想,的最小值為然后加以證明即可。

解:(1)設數列公差為,由題意可知,即

解得(舍去).      …………3分

所以,.        …………6分

(2)不等式等價于,

時,;當時,;

,所以猜想,的最小值為.     …………8分

下證不等式對任意恒成立.

方法一:數學歸納法.

時,,成立.

假設當時,不等式成立,

時,, …………10分

只要證  ,只要證  ,

只要證  ,只要證 

只要證  ,顯然成立.所以,對任意,不等式恒成立.…14分

方法二:單調性證明.

要證 

只要證  ,  

設數列的通項公式,        …………10分

,    …………12分

所以對,都有,可知數列為單調遞減數列.

,所以恒成立,

的最小值為

 

查看答案和解析>>

給出問題:已知滿足,試判定的形狀.某學生的解答如下:

解:(i)由余弦定理可得,

,

,

,

是直角三角形.

(ii)設外接圓半徑為.由正弦定理可得,原式等價于

,

是等腰三角形.

綜上可知,是等腰直角三角形.

請問:該學生的解答是否正確?若正確,請在下面橫線中寫出解題過程中主要用到的思想方法;若不正確,請在下面橫線中寫出你認為本題正確的結果.           .

 

查看答案和解析>>

(2012•普陀區一模)給出問題:已知△ABC滿足a•cosA=b•cosB,試判斷△ABC的形狀,某學生的解答如下:
(i)a•
b2+c2-a2
2bc
=b•
a2+c2-b2
2ac
?a2(b2+c2-a2)=b2(a2+c2-b2)?(a2-b2)•c2=(a2-b2)(a2+b2)?c2=a2+b2
故△ABC是直角三角形.
(ii)設△ABC外接圓半徑為R,由正弦定理可得,原式等價于2RsinAcosA=2RsinBcosB?sin2A=cos2B?A=B
故△ABC是等腰三角形.
綜上可知,△ABC是等腰直角三角形.
請問:該學生的解答是否正確?若正確,請在下面橫線中寫出解題過程中主要用到的思想方法;若不正確,請在下面橫線中寫出你認為本題正確的結果
等腰或直角三角形
等腰或直角三角形

查看答案和解析>>

,則不等式等價于( 。

A.      B.

C.             D.

 

查看答案和解析>>


同步練習冊答案
久久精品免费一区二区视