說明:本例體現了對數運算性質的靈活運用.方法一是正向用公式的分.方法二是逆向用公式的合.是分還是合.關鍵在于自己的習慣. 查看更多

 

題目列表(包括答案和解析)

設點是拋物線的焦點,是拋物線上的個不同的點().

(1) 當時,試寫出拋物線上的三個定點、、的坐標,從而使得

;

(2)當時,若

求證:;

(3) 當時,某同學對(2)的逆命題,即:

“若,則.”

開展了研究并發現其為假命題.

請你就此從以下三個研究方向中任選一個開展研究:

① 試構造一個說明該逆命題確實是假命題的反例(本研究方向最高得4分);

② 對任意給定的大于3的正整數,試構造該假命題反例的一般形式,并說明你的理由(本研究方向最高得8分);

③ 如果補充一個條件后能使該逆命題為真,請寫出你認為需要補充的一個條件,并說明加上該條件后,能使該逆命題為真命題的理由(本研究方向最高得10分).

【評分說明】本小題若填空不止一個研究方向,則以實得分最高的一個研究方向的得分作為本小題的最終得分.

【解析】第一問利用拋物線的焦點為,設,

分別過作拋物線的準線的垂線,垂足分別為.

由拋物線定義得到

第二問設,分別過作拋物線的準線垂線,垂足分別為.

由拋物線定義得

第三問中①取時,拋物線的焦點為,

,分別過作拋物線的準線垂線,垂足分別為.由拋物線定義得

,

,不妨取;;;

解:(1)拋物線的焦點為,設,

分別過作拋物線的準線的垂線,垂足分別為.由拋物線定義得

 

因為,所以,

故可取滿足條件.

(2)設,分別過作拋物線的準線垂線,垂足分別為.

由拋物線定義得

   又因為

;

所以.

(3) ①取時,拋物線的焦點為,

分別過作拋物線的準線垂線,垂足分別為.由拋物線定義得

,

,不妨取;;;,

,

.

,,是一個當時,該逆命題的一個反例.(反例不唯一)

② 設,分別過

拋物線的準線的垂線,垂足分別為,

及拋物線的定義得

,即.

因為上述表達式與點的縱坐標無關,所以只要將這點都取在軸的上方,則它們的縱坐標都大于零,則

,

,所以.

(說明:本質上只需構造滿足條件且的一組個不同的點,均為反例.)

③ 補充條件1:“點的縱坐標)滿足 ”,即:

“當時,若,且點的縱坐標)滿足,則”.此命題為真.事實上,設

分別過作拋物線準線的垂線,垂足分別為,由,

及拋物線的定義得,即,則

,

又由,所以,故命題為真.

補充條件2:“點與點為偶數,關于軸對稱”,即:

“當時,若,且點與點為偶數,關于軸對稱,則”.此命題為真.(證略)

 

查看答案和解析>>

(1)已知:sinα+sinβ=
3
5
cosα+cosβ=
4
5
求cos(α-β)的值
(2)將(1)中已知條件進行適當改變,能否求出sin(α-β)的值,若能求出其值,若不能請說明理由.
(3)你能依此也創設一道類似題嗎?或將本例推廣到一般情形.

查看答案和解析>>

已知函數,,k為非零實數.

(Ⅰ)設t=k2,若函數f(x),g(x)在區間(0,+∞)上單調性相同,求k的取值范圍;

(Ⅱ)是否存在正實數k,都能找到t∈[1,2],使得關于x的方程f(x)=g(x)在[1,5]上有且僅有一個實數根,且在[-5,-1]上至多有一個實數根.若存在,請求出所有k的值的集合;若不存在,請說明理由.

 

【解析】本試題考查了運用導數來研究函數的單調性,并求解參數的取值范圍。與此同時還能對于方程解的問題,轉化為圖像與圖像的交點問題來長處理的數學思想的運用。

 

查看答案和解析>>

. (本小題滿分14分)已知函數,.

(Ⅰ)求函數的極值點;(Ⅱ)若函數上有零點,求的最大值;(Ⅲ)證明:當時,有成立;若),試問數列中是否存在?若存在,求出所有相等的兩項;若不存在,請說明理由.(為自然對數的底數)

查看答案和解析>>

已知函數,曲線在點x=1處的切線為,若時,有極值。

(1)求的值; (2)求上的最大值和最小值。

【解析】本試題主要考查了導數的幾何意義的運用,以及運用導數在研究函數的極值和最值的問題。體現了導數的工具性的作用。

 

查看答案和解析>>


同步練習冊答案
久久精品免费一区二区视