∵.∴.又由得. ∴ 的定義域為.(2)∵的定義域不關于原點對稱.∴為非奇非偶函數.) 查看更多

 

題目列表(包括答案和解析)

設函數f(x)的定義域D關于原點對稱,0∈D,且存在常數a>0,使f(a)=1,又,

(1)寫出f(x)的一個函數解析式,并說明其符合題設條件;

(2)判斷并證明函數f(x)的奇偶性;

(3)若存在正常數T,使得等式f(x)=f(x+T)或者f(x)=f(x-T)對于x∈D都成立,則都稱f(x)是周期函數,T為周期;試問f(x)是不是周期函數?若是,則求出它的一個周期T;若不是,則說明理由。

查看答案和解析>>

設函數f(x)的定義域D關于原點對稱,0∈D,且存在常數a>0,使f(a)=1,又,
(1)寫出f(x)的一個函數解析式,并說明其符合題設條件;
(2)判斷并證明函數f(x)的奇偶性;
(3)若存在正常數T,使得等式f(x)=f(x+T)或者f(x)=f(x-T)對于x∈D都成立,則都稱f(x)是周期函數,T為周期;試問f(x)是不是周期函數?若是,則求出它的一個周期T;若不是,則說明理由。

查看答案和解析>>

已知函數f(x)=,為常數。

(I)當=1時,求f(x)的單調區間;

(II)若函數f(x)在區間[1,2]上為單調函數,求的取值范圍。

【解析】本試題主要考查了導數在研究函數中的運用。第一問中,利用當a=1時,f(x)=,則f(x)的定義域是然后求導,,得到由,得0<x<1;由,得x>1;得到單調區間。第二問函數f(x)在區間[1,2]上為單調函數,則在區間[1,2]上恒成立,即即,或在區間[1,2]上恒成立,解得a的范圍。

(1)當a=1時,f(x)=,則f(x)的定義域是

。

,得0<x<1;由,得x>1;

∴f(x)在(0,1)上是增函數,在(1,上是減函數!6分

(2)。若函數f(x)在區間[1,2]上為單調函數,

在區間[1,2]上恒成立!,或在區間[1,2]上恒成立。即,或在區間[1,2]上恒成立。

又h(x)=在區間[1,2]上是增函數。h(x)max=(2)=,h(x)min=h(1)=3

,或。    ∴,或。

 

查看答案和解析>>


同步練習冊答案
久久精品免费一区二区视