題目列表(包括答案和解析)
已知函數,(
),
(1)若曲線與曲線
在它們的交點(1,c)處具有公共切線,求a,b的值
(2)當時,若函數
的單調區間,并求其在區間(-∞,-1)上的最大值。
【解析】(1),
∵曲線與曲線
在它們的交點(1,c)處具有公共切線
∴,
∴
(2)令,當
時,
令
,得
時,
的情況如下:
x |
|
|
|
|
|
|
+ |
0 |
- |
0 |
+ |
|
|
|
|
|
|
所以函數的單調遞增區間為
,
,單調遞減區間為
當,即
時,函數
在區間
上單調遞增,
在區間
上的最大值為
,
當且
,即
時,函數
在區間
內單調遞增,在區間
上單調遞減,
在區間
上的最大值為
當,即a>6時,函數
在區間
內單調遞贈,在區間
內單調遞減,在區間
上單調遞增。又因為
所以在區間
上的最大值為
。
已知.
(1)求的單調區間;
(2)證明:當時,
恒成立;
(3)任取兩個不相等的正數,且
,若存在
使
成立,證明:
.
【解析】(1)g(x)=lnx+,
=
(1’)
當k0時,
>0,所以函數g(x)的增區間為(0,+
),無減區間;
當k>0時,>0,得x>k;
<0,得0<x<k∴增區間(k,+
)減區間為(0,k)(3’)
(2)設h(x)=xlnx-2x+e(x1)令
= lnx-1=0得x=e, 當x變化時,h(x),
的變化情況如表
x |
1 |
(1,e) |
e |
(e,+ |
|
|
- |
0 |
+ |
h(x) |
e-2 |
|
0 |
↗ |
所以h(x)0, ∴f(x)
2x-e
(5’)
設G(x)=lnx-(x
1)
=
=
0,當且僅當x=1時,
=0所以G(x) 為減函數, 所以G(x)
G(1)=0, 所以lnx-
0所以xlnx
(x
1)成立,所以f(x)
,綜上,當x
1時, 2x-e
f(x)
恒成立.
(3) ∵=lnx+1∴lnx0+1=
=
∴lnx0=
-1
∴lnx0 –lnx
=
-1–lnx
=
=
=
(10’) 設H(t)=lnt+1-t(0<t<1),
=
=
>0(0<t<1), 所以H(t) 在(0,1)上是增函數,并且H(t)在t=1處有意義, 所以H(t)
<H(1)=0∵
∴
=
∴lnx0 –lnx>0, ∴x0 >x
(本小題滿分12分)已知函數
(I)若函數在區間
上存在極值,求實數a的取值范圍;
(II)當時,不等式
恒成立,求實數k的取值范圍.
(Ⅲ)求證:解:(1),其定義域為
,則
令
,
則,
當時,
;當
時,
在(0,1)上單調遞增,在
上單調遞減,
即當時,函數
取得極大值. (3分)
函數
在區間
上存在極值,
,解得
(4分)
(2)不等式,即
令
(6分)
令,則
,
,即
在
上單調遞增, (7分)
,從而
,故
在
上單調遞增, (7分)
(8分)
(3)由(2)知,當時,
恒成立,即
,
令,則
, (9分)
(10分)
以上各式相加得,
即,
即
(12分)
。
D
解析:當x>0時,,即
令
,
則函數在區間(0,+∞)上為減函數,又
在定義域上是奇函數,
∴函數在定義域上是偶函數,且
,則
>0在(0,+∞)上的解集是(0,2);
函數是定義域上的奇函數,則
>0的解集是(-∞,-2)∪(0,2).
D
解析:當x>0時,,即
令
,
則函數在區間(0,+∞)上為減函數,又
在定義域上是奇函數,
∴函數在定義域上是偶函數,且
,則
>0在(0,+∞)上的解集是(0,2);
函數是定義域上的奇函數,則
>0的解集是(-∞,-2)∪(0,2).
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com