例1.已知函數解析式為y=x2,其值域為{1,4},求此函數的定義域解:x2=1.解得x=±1.定義域中必須含有1或-1,x2=4解得x=±2.定義域中必須含有2或-2 ∴定義域為{-1,-2}或{-1,2}或{1,2}或{1,-2}或{-1,1,-2}或{-1,1,2}或{1,2,-2}或{-1,2,-2}或{-1,1,2,-2}之一變式1:值域為[1.4]時.說明函數定義域的個數變式2:值域為[0.4]時.寫出其一個定義域(解答不唯一.如:[-2,a]其中0≤a≤2或[a,2]其中-2≤a≤0) 查看更多

 

題目列表(包括答案和解析)

已知函數y=f(x)滿足f(a-tanθ)=cotθ-1,(其中,a、θ∈R均為常數)
(1)求函數y=f(x)的解析式;
(2)利用函數y=f(x)構造一個數列{xn},方法如下:
對于給定的定義域中的x1,令x2=f(x1),x3=f(x2),…,xn=f(xn-1),…
在上述構造過程中,如果xi(i=1,2,3,…)在定義域中,構造數列的過程繼續下去;如果xi不在定義域中,則構造數列的過程停止.
①如果可以用上述方法構造出一個常數列{xn},求a的取值范圍;
②如果取定義域中的任一值作為x1,都可以用上述方法構造出一個無窮數列{xn},求a實數的值.

查看答案和解析>>

已知函數y=f(x)滿足f(a-tanθ)=cotθ-1,(其中,a、θ∈R均為常數)
(1)求函數y=f(x)的解析式;
(2)利用函數y=f(x)構造一個數列{xn},方法如下:
對于給定的定義域中的x1,令x2=f(x1),x3=f(x2),…,xn=f(xn-1),…
在上述構造過程中,如果xi(i=1,2,3,…)在定義域中,構造數列的過程繼續下去;如果xi不在定義域中,則構造數列的過程停止.
①如果可以用上述方法構造出一個常數列{xn},求a的取值范圍;
②如果取定義域中的任一值作為x1,都可以用上述方法構造出一個無窮數列{xn},求a實數的值.

查看答案和解析>>

已知函數y=f(x)滿足f(a-tanθ)=cotθ-1,(其中,a、θ∈R均為常數)
(1)求函數y=f(x)的解析式;
(2)利用函數y=f(x)構造一個數列{xn},方法如下:
對于給定的定義域中的x1,令x2=f(x1),x3=f(x2),…,xn=f(xn-1),…
在上述構造過程中,如果xi(i=1,2,3,…)在定義域中,構造數列的過程繼續下去;如果xi不在定義域中,則構造數列的過程停止.
①如果可以用上述方法構造出一個常數列{xn},求a的取值范圍;
②如果取定義域中的任一值作為x1,都可以用上述方法構造出一個無窮數列{xn},求a實數的值.

查看答案和解析>>


同步練習冊答案
久久精品免费一区二区视