解:P==0.82 查看更多

 

題目列表(包括答案和解析)

(考生注意:請在下列三題中任選一題作答,如果多做,則按所做的第一題評分)
A.(不等式選做題)不等式|x+1|-|x-3|≥0的解集是
{x|x≥1}
{x|x≥1}

B.(幾何證明選做題) 如圖,⊙O的直徑AB=6cm,P是延長線上的一點,過點P作⊙O的切線,切點為C,連接AC,若∠CAP=30°,則PC=
3
3
3
3

C.(極坐標系與參數方程選做題)在極坐標系中,已知曲線ρ=2cosθ與直線3ρcosθ+4ρsinθ+a=0相切,則實數a的值為
2或-8
2或-8

查看答案和解析>>

某學校課題組為了研究學生的數學成績與物理成績之間的關系,隨機抽取高二年級20名學生某次考試成績(百分制)如下表所示:
序號 1 2 3 4 5 6 7 8 9 10
數學成績 95 75 80 94 92 65 67 84 98 71
物理成績 90 63 72 87 91 71 58 82 93 81
序號 11 12 13 14 15 16 17 18 19 20
數學成績 67 93 64 78 77 90 57 83 72 83
物理成績 77 82 48 85 69 91 61 84 78 86
若數學成績90分以上為優秀,物理成績85分(含85分)以上為優秀.
(Ⅰ)根據上表完成下面的2×2列聯表:
數學成績優秀 數學成績不優秀 合計
物理成績優秀
物理成績不優秀 12
合計 20
(Ⅱ)根據題(1)中表格的數據計算,有多少的把握認為學生的數學成績與物理成績之間有關系?
(Ⅲ)若按下面的方法從這20人中抽取1人來了解有關情況:將一個標有數字1,2,3,4,5,6的正六面體骰子連續投擲兩次,記朝上的兩個數字的乘積為被抽取人的序號,試求:抽到12號的概率的概率.
參考數據公式:①獨立性檢驗臨界值表
P(K2≥x0 0.50 0.40 0.25 0.15 0.10 0.05 0.025 0.010 0.005 0.001
x0 0.455 0.708 1.323 2.072 2.706 3.841 5.024 6.635 7.879 10.828
②獨立性檢驗隨機變量K2值的計算公式:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)

查看答案和解析>>

(本題滿分12分)

某學校的課題組為了研究學生的數學成績與物理成績之間的關系,隨機抽取高二年級20名學生某次考試成績(滿分100分)如下表所示:

序號

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

數學

95

75

80

94

92

65

67

84

98

71

67

93

64

78

77

90

57

83

72

83

物理

90

63

72

87

91

71

58

82

93

81

77

82

48

85

69

91

61

84

78

86

若單科成績在85分以上(含85分),則該科成績為優秀.

(1)根據上表完成下面的列聯表(單位:人)

數學成績優秀

數學成績不優秀

總計

物理成績優秀

物理成績不優秀

總計

20

(2)根據(1)中表格的數據計算,是否有99%的把握,認為學生的數學成績與物理成績之間有關系?

(3)若從這20個人中抽出1人來了解有關情況,求抽到的學生數學成績與物理成績至少有一門不優秀的概率.

參考公式:

P(K2k)

0.100

0.050

0.025

0.010

0.001

k

2.706

3.841

5.024

6.635

10.828

查看答案和解析>>

某學校課題小組為了研究學生的數學成績與物理成績之間的關系,隨機抽取高二年級20名學生某次考試成績(滿分100分)如下表所示:
序號 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
數學成績 95 75 80 94 92 65 67 84 98 71 67 93 64 78 77 90 57 83 72 83
物理成績 90 63 72 87 91 71 58 82 93 81 77 82 48 85 69 91 61 84 78 86
若單科成績85分以上(含85分),則該科成績為優秀.
(1)根據上表完成下面的2×2列聯表(單位:人):
數學成績優秀 數學成績不優秀 合計
物理成績優秀
物理成績不優秀
合計 20
(2)根據題(1)中表格的數據計算,有多大的把握,認為學生的數學成績與物理成績之間有關系?
(3)若從這20個人中抽出1人來了解有關情況,求抽到的學生數學成績與物理成績至少有一門不優秀的概率.
參考數據:
①假設有兩個分類變量X和Y,它們的值域分別為{x1,x2}和{y1,y2},其樣本頻數列聯表(稱為2×2列聯表)為:
y1 y2 合計
x1 a b a+b
x2 c d c+d
合計 a+c b+d a+b+c+d
則隨機變量K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
,其中n=a+b+c+d為樣本容量;
②獨立檢驗隨機變量K2的臨界值參考表:
P(K2≥k0 0.50 0.40 0.25 0.15 0.10 0.05 0.025 0.010 0.005 0.001
k0 0.455 0.708 1.323 2.072 2.706 3.841 5.024 6.635 7.879 10.828

查看答案和解析>>


同步練習冊答案
久久精品免费一区二区视