(2)在線段上是否存在點.使直線與垂直. 查看更多

 

題目列表(包括答案和解析)

已知定點,動點B是圓FF為圓心)上一點,線段AB的垂直平分線交BFP。

(Ⅰ)求動點P的軌跡方程;

(Ⅱ)直線P點的軌跡于M、N兩點,若P點的軌跡上存在點C,使

,求實數m的值;

(Ⅲ)是否存在過點的直線lP點的軌跡于點R、T,且滿足O為原點)?若存在,求直線l的方程,若不存在,請說明理由。

查看答案和解析>>

定長為3的線段兩端點分別在軸,軸上滑動,在線段上,且

(1)求點的軌跡的方程.

(2)設過且不垂直于坐標軸的直線交軌跡兩點.問:線段上是否存在一點,使得以為鄰邊的平行四邊形為菱形?作出判斷并證明.

 

查看答案和解析>>

 如圖1,拋物線y=ax2+bx+c(a≠0)的頂點為(1,4),交x軸于A、B,交y軸于D,其中B點的坐標為(3,0)

(1)求拋物線的解析式

(2)如圖2,過點A的直線與拋物線交于點E,交y軸于點F,其中E點的橫坐標為2,若直線PQ為拋物線的對稱軸,點G為PQ上一動點,則軸上是否存在一點H,使D、G、F、H四點圍成的四邊形周長最小.若存在,求出這個最小值及G、H的坐標;若不存在,請說明理由.

(3)如圖3,拋物線上是否存在一點,過點軸的垂線,垂足為,過點作直線,交線段于點,連接,使,若存在,求出點的坐標;若不存在,說明理由.

       圖1                        圖2                          圖3

 

 

 

 

 

 

查看答案和解析>>

定長為3的線段AB兩端點A,B分別在x軸,y軸上滑動,M在線段AB上,且
(1)求點M的軌跡C的方程;
(2)設過且不垂直于坐標軸的直線交軌跡C與A,B兩點。問:線段OF上是否存在一點D,使得以DA,DB為鄰邊的平行四邊形為菱形?作出判斷并證明。

查看答案和解析>>

已知點和拋物線的焦點關于軸對稱,點是以點為圓心,4為半徑的上任意一點,線段的垂直平分線與線段交于點,設點的軌跡為曲線,

求拋物線和曲線的方程;

是否存在直線,使得直線分別與拋物線及曲線均只有一個公共點,若存在,求出所有這樣的直線的方程,若不存在,請說明理由.

查看答案和解析>>

 

說明:1.參考答案與評分標準指出了每道題要考查的主要知識和能力,并給出了一種或幾種解法供參考,如果考生的解法與參考答案不同,可根據試題主要考查的知識點和能力比照評分標準給以相應的分數.

      2.對解答題中的計算題,當考生的解答在某一步出現錯誤時,如果后繼部分的解答未改變該題的內容和難度,可視影響的程度決定后繼部分的得分,但所給分數不得超過該部分正確解答應得分數的一半;如果后繼部分的解答有較嚴重的錯誤,就不再給分.

      3.解答右端所注分數,表示考生正確做到這一步應得的累加分數.

4.只給整數分數,選擇題和填空題不給中間分.

 

一、選擇題:本大題考查基本知識和基本運算.共8小題,每小題5分,滿分40分.

題號

1

2

3

4

5

6

7

8

答案

A

C

B

C

B

A

D

D

 

二、填空題:本大題共7小題,每小題5分,滿分30分.其中13~15題是選做題,考生只能選做二題,三題全答的,只計算前二題得分.第12題第1個空3分,第2個空2分.

9.2          10.79         11.0 或 2       12.16,

13.1         14.3          15.6

三、解答題:本大題共6小題,滿分80分.解答須寫出文字說明、證明過程和演算步驟.

16.(本小題主要考查三角函數性質和三角函數的基本關系等知識,考查化歸與轉化的數學思想方法,以及運算求解能力)

解:(1)

                 .                

,

∴函數的值域為.                                     

(2)∵,,∴,

都為銳角,∴,

                    

                  

           

的值為.                                      

 

17.(本小題主要考查空間線面關系、幾何體的表面積與體積等基本知識,考查數形結合的數學思想方法,以及空間想象能力、推理論證能力和運算求解能力)

解:(1)設,∵幾何體的體積為,

,                      

,

,解得

的長為4.                                           

(2)在線段上存在點,使直線垂直.     

以下給出兩種證明方法:

方法1:過點的垂線交于點,過點 

于點

,,,

平面

平面,∴

,∴平面

平面,∴.      

在矩形中,∵,

,即,∴

,∴,即,∴

中,∵,∴

由余弦定理,得

∴在線段上存在點,使直線垂直,且線段的長為

方法2:以點為坐標原點,分別以,所在的直線為軸,軸,軸建立如圖的空間直角坐標系,由已知條件與(1)可知,,,  

假設在線段上存在點≤2,,0≤

使直線垂直,過點于點

 

,得,

,

,∴,

,∴.       

此時點的坐標為,在線段上.

,∴

∴在線段上存在點,使直線垂直,且線段的長為

18.(本小題主要考查等差數列、等比數列的通項公式與前項和公式等基礎知識,考查化歸與轉化、分類與整合的數學思想方法,以及推理論證能力和運算求解能力)

解:設等比數列的首項為,公比為,

,,成等差數列,

,,∴

解得.             

時,∵,,         

∴當時,,不成等差數列.

時,,,成等差數列.下面給出兩種證明方法.

證法1:∵

                            

                            ,

∴當時,,,成等差數列.

證法2:∵,          

              , 

∴當時,,,成等差數列. 

19.(本小題主要考查等可能事件、互斥事件和獨立重復試驗等基礎知識,考查化歸與轉化的數學思想方法,以及推理論證能力和運算求解能力)

解:(1)∵一次摸球從個球中任選兩個,有種選法,                         

任何一個球被選出都是等可能的,其中兩球顏色相同有種選法,

∴一次摸球中獎的概率.             

(2)若,則一次摸球中獎的概率,                  

三次摸球是獨立重復試驗,三次摸球恰有一次中獎的概率是

.                                    

(3)設一次摸球中獎的概率為,則三次摸球恰有一次中獎的概率為,

,

上為增函數,在上為減函數.              

∴當時,取得最大值.

,

解得

故當時,三次摸球恰有一次中獎的概率最大.                 

 

20.(本小題主要考查函數的性質、函數與導數等知識,考查化歸與轉化、分類與整合的數學思想方法,以及抽象概括能力、推理論證能力和運算求解能力)

(1)解法1:∵,其定義域為,  

.                

是函數的極值點,∴,即.                                         

,∴.                                               

經檢驗當時,是函數的極值點,

.                                             

解法2:∵,其定義域為,

.               

,即,整理,得

,

的兩個實根(舍去),,

變化時,,的變化情況如下表:

0

極小值

依題意,,即,

,∴.                           

(2)解:對任意的都有成立等價于對任意的都有.                       

[1,]時,

同步練習冊答案
久久精品免费一区二区视