17. 查看更多

 

題目列表(包括答案和解析)

(本小題滿分15分)

已知函數,其中, (),若相鄰兩對稱軸間的距離不小于

   (Ⅰ)求的取值范圍;

   (Ⅱ)在中,分別是角的對邊,,當最大時,,求的面積.

查看答案和解析>>

(本小題滿分15分)

某旅游商品生產企業,2009年某商品生產的投入成本為1元/件,

出廠價為流程圖的輸出結果元/件,年銷售量為10000件,

因2010年國家長假的調整,此企業為適應市場需求,

計劃提高產品檔次,適度增加投入成本.若每件投入成本增加的

比例為),則出廠價相應提高的比例為,

同時預計銷售量增加的比例為

已知得利潤(出廠價投入成本)年銷售量.

(Ⅰ)寫出2010年預計的年利潤

與投入成本增加的比例的關系式;

(Ⅱ)為使2010年的年利潤比2009年有所增加,

問:投入成本增加的比例應在什么范圍內?

查看答案和解析>>

(本小題滿分15分)某地有三個村莊,分別位于等腰直角三角形ABC的三個頂點處,已知AB=AC=6km,現計劃在BC邊的高AO上一點P處建造一個變電站. 記P到三個村莊的距離之和為y.

(1)設,把y表示成的函數關系式;

(2)變電站建于何處時,它到三個小區的距離之和最。

查看答案和解析>>

(本小題滿分15分)如圖,已知圓Ox2+y2=2交x軸于A,B兩點,曲線C是以AB為長軸,離心率為的橢圓,其右焦點為F.若點P(-1,1)為圓O上一點,連結PF,過原點O作直線PF的垂線交橢圓C的右準線l于點Q.(1)求橢圓C的標準方程;

(2)證明:直線PQ與圓O相切.

查看答案和解析>>

(本小題滿分15分)已知等差數列{an}中,首項a1=1,公差d為整數,且滿足a1+3<a3,a2+5>a4,數列{bn}滿足,其前n項和為Sn.(1)求數列{an}的通項公式an;(2)若S2S1Sm(m∈N*)的等比中項,求正整數m的值.

查看答案和解析>>

 

1

2

3

4

5

6

7

8

2

9

充分不必要

4

①②④

9

10

11

12

13

14

 

或0

點P在圓內

①②③

 

 

15.解: (1)因為各組的頻率和等于1,故低于50分的頻率為:

所以低于50分的人數為(人)………………………………………….5分

(2)依題意,成績60及以上的分數所在的第三、四、五、六組(低于50分的為第一組),

頻率和為

所以,抽樣學生成績的合格率是%.

于是,可以估計這次考試物理學科及格率約為%……………………………………9分.

(3)“成績低于50分”及“[50,60)”的人數分別是6,9。所以從成績不及格的學生中選兩人,他們成績至少有一個不低于50分的概率為:  ……………14分

16.解:(1),

,∴

,∴.………………………………………………………………7分

(2)mn

|mn|

,∴,∴

從而

∴當=1,即時,|mn|取得最小值

所以,|mn|.………………………………………………………………14分

17.(1)證明:E、P分別為AC、A′C的中點,

        EP∥A′A,又A′A平面AA′B,EP平面AA′B

       ∴即EP∥平面A′FB                  …………………………………………7分

(2) 證明:∵BC⊥AC,EF⊥A′E,EF∥BC

   ∴BC⊥A′E,∴BC⊥平面A′EC

     BC平面A′BC

   ∴平面A′BC⊥平面A′EC             …………………………………………14分

注:直角三角形條件在證這兩問時多余了,可直接用兩側面的直角三角形證明即可。

18.解:(1)取弦的中點為M,連結OM

由平面幾何知識,OM=1

     得:  

∵直線過F、B ,∴     …………………………………………6分

(2)設弦的中點為M,連結OM

       解得     

                    …………………………………………15分

(本題也可以利用特征三角形中的有關數據直接求得)

19.


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

第(3)問的構造法可直接用第二種方法,作差后用代換即可。

20.解:(1)由方程組的解為不符合題設,可證。………3

(2)假設存在。

由方程組,得,即…5

),可證:當時,單調遞減且;當時,單調遞減且。

,設,則………7

①當時,遞增,故

于是,上單調遞減。

,則,上遞增,,即,所以。………9

②當時,,遞減,故,

于是,上單調遞減。

,上遞減,,即,所以

由函數)的性質可知滿足題設的不存在。………11

(3)假設1,,是一個公差為的等差數列的第r、s、t項,又是一個等比為等比數列的第r、s、t項。于是有:,

,

從而有, 所以。

,同(2)可知滿足題設的不存在………16

注:證法太繁,在第二問中,可用來表示,消去可得,則構造易得到極值點為。

 

 

 

 

 

附加題參考答案

附1.(1)設M=,則有==,

所以   解得,所以M=.…………………………5分

(2)任取直線l上一點P(x,y)經矩陣M變換后為點P’(x’,y’).

因為,所以又m:

所以直線l的方程(x+2y)-(3x+4y)=4,即x+y+2=0.………………………………10分

附2.解:以有點為原點,極軸為軸正半軸,建立平面直角坐標系,兩坐標系中取相同的長度單位.

(1),,由

所以

為圓的直角坐標方程. 

同理為圓的直角坐標方程. ……………………………………6分

(2)由      

相減得過交點的直線的直角坐標方程為. …………………………10分

附3.(1)設P(x,y),根據題意,得

化簡,得.………………………………………………………………5分

(2).……………………………………10分

附4.(1)記事件A為“任取兩張卡片,將卡片上的函數相加得到的函數是奇函數”,由題意知               ………………………………4分

(2)ξ可取1,2,3,4.   ,

 ;………………8分

 故ξ的分布列為

ξ

1

2

3

4

P

                                                             

  答:ξ的數學期望為       …………10分

 


同步練習冊答案
久久精品免费一区二区视