余弦定理可得-----------------------------------------------------12分 查看更多

 

題目列表(包括答案和解析)

給出問題:已知滿足,試判定的形狀.某學生的解答如下:

解:(i)由余弦定理可得,

,

,

是直角三角形.

(ii)設外接圓半徑為.由正弦定理可得,原式等價于

是等腰三角形.

綜上可知,是等腰直角三角形.

請問:該學生的解答是否正確?若正確,請在下面橫線中寫出解題過程中主要用到的思想方法;若不正確,請在下面橫線中寫出你認為本題正確的結果.           .

 

查看答案和解析>>

如圖,在正四棱錐中,

(1)求該正四棱錐的體積;

(2)設為側棱的中點,求異面直線

所成角的大小.

【解析】第一問利用設為底面正方形中心,則為該正四棱錐的高由已知,可求得,

所以,

第二問設中點,連結、

可求得,,,

中,由余弦定理,得

所以,

 

查看答案和解析>>

(2012•普陀區一模)給出問題:已知△ABC滿足a•cosA=b•cosB,試判斷△ABC的形狀,某學生的解答如下:
(i)a•
b2+c2-a2
2bc
=b•
a2+c2-b2
2ac
?a2(b2+c2-a2)=b2(a2+c2-b2)?(a2-b2)•c2=(a2-b2)(a2+b2)?c2=a2+b2
故△ABC是直角三角形.
(ii)設△ABC外接圓半徑為R,由正弦定理可得,原式等價于2RsinAcosA=2RsinBcosB?sin2A=cos2B?A=B
故△ABC是等腰三角形.
綜上可知,△ABC是等腰直角三角形.
請問:該學生的解答是否正確?若正確,請在下面橫線中寫出解題過程中主要用到的思想方法;若不正確,請在下面橫線中寫出你認為本題正確的結果
等腰或直角三角形
等腰或直角三角形

查看答案和解析>>

觀察下面兩個推理過程及結論:

若銳角滿足,以角分別為內角構造一個三角形,依據正弦定理和余弦定理可得到等式:,

若銳角滿足,則,以角分別為內角構造一個三角形,依據正弦定理和余弦定理可以得到的等式:.

則:若銳角滿足,類比上面推理方法,可以得到的一個等式是______________.

 

查看答案和解析>>

觀察下面兩個推理過程及結論:

若銳角滿足,以角分別為內角構造一個三角形,依據正弦定理和余弦定理可得到等式:,

若銳角滿足,則,以角分別為內角構造一個三角形,依據正弦定理和余弦定理可以得到的等式:.

則:若銳角滿足,類比上面推理方法,可以得到的一個等式是______________.

 

查看答案和解析>>


同步練習冊答案
久久精品免费一区二区视