題目列表(包括答案和解析)
已知函數,其中
.
(1)若在
處取得極值,求曲線
在點
處的切線方程;
(2)討論函數在
的單調性;
(3)若函數在
上的最小值為2,求
的取值范圍.
【解析】第一問,因
在
處取得極值
所以,,解得
,此時
,可得求曲線
在點
處的切線方程為:
第二問中,易得的分母大于零,
①當時,
,函數
在
上單調遞增;
②當時,由
可得
,由
解得
第三問,當時由(2)可知,
在
上處取得最小值
,
當時由(2)可知
在
處取得最小值
,不符合題意.
綜上,函數在
上的最小值為2時,求
的取值范圍是
設A是由m×n個實數組成的m行n列的數表,滿足:每個數的絕對值不大于1,且所有數的和為零,記s(m,n)為所有這樣的數表構成的集合。
對于A∈S(m,n),記ri(A)為A的第ⅰ行各數之和(1≤ⅰ≤m),Cj(A)為A的第j列各數之和(1≤j≤n):
記K(A)為∣r1(A)∣,∣R2(A)∣,…,∣Rm(A)∣,∣C1(A)∣,∣C2(A)∣,…,∣Cn(A)∣中的最小值。
(1) 對如下數表A,求K(A)的值;
1 |
1 |
-0.8 |
0.1 |
-0.3 |
-1 |
(2)設數表A∈S(2,3)形如
1 |
1 |
c |
a |
b |
-1 |
求K(A)的最大值;
(3)給定正整數t,對于所有的A∈S(2,2t+1),求K(A)的最大值。
【解析】(1)因為,
所以
(2) 不妨設.由題意得
.又因為
,所以
,
于是,
,
所以,當
,且
時,
取得最大值1。
(3)對于給定的正整數t,任給數表如下,
|
|
… |
|
|
|
… |
|
任意改變A的行次序或列次序,或把A中的每一個數換成它的相反數,所得數表
,并且
,因此,不妨設
,
且。
由得定義知,
,
又因為
所以
所以,
對數表:
1 |
1 |
… |
1 |
|
… |
|
|
|
… |
|
-1 |
… |
-1 |
則且
,
綜上,對于所有的,
的最大值為
已知冪函數滿足
。
(1)求實數k的值,并寫出相應的函數的解析式;
(2)對于(1)中的函數,試判斷是否存在正數m,使函數
,在區間上的最大值為5。若存在,求出m的值;若不存在,請說明理由。
【解析】本試題主要考查了函數的解析式的求解和函數的最值的運用。第一問中利用,冪函數滿足
,得到
因為,所以k=0,或k=1,故解析式為
(2)由(1)知,,
,因此拋物線開口向下,對稱軸方程為:
,結合二次函數的對稱軸,和開口求解最大值為5.,得到
(1)對于冪函數滿足
,
因此,解得
,………………3分
因為,所以k=0,或k=1,當k=0時,
,
當k=1時,,綜上所述,k的值為0或1,
!6分
(2)函數,………………7分
由此要求,因此拋物線開口向下,對稱軸方程為:
,
當時,
,因為在區間
上的最大值為5,
所以,或
…………………………………………10分
解得滿足題意
(本小題滿分12分)
如圖,在邊長為4的菱形中,
.點
分別在邊
上,點
與點
不重合,
,
.沿
將
翻折到
的位置,使平面
⊥平面
.
(1)求證:⊥平面
;
(2)當取得最小值時,請解答以下問題:
(i)求四棱錐的體積;
(ii)若點滿足
=
(
),試探究:直線
與平面
所成角的大小是否一定大于
?并說明理由.
10-x |
10+x |
10-x |
10+x |
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com