證法三:(i)當n=1時.不等式成立, 查看更多

 

題目列表(包括答案和解析)

(1)設a1,a2,…,an是各項均不為零的n(n≥4)項等差數列,且公差d≠0,若將此數列刪去某一項后得到的數列(按原來的順序)是等比數列.
(i)當n=4時,求
a1d
的數值;
(ii)求n的所有可能值.
(2)求證:對于給定的正整數n(n≥4),存在一個各項及公差均不為零的等差數列b1,b2,…,bn,其中任意三項(按原來的順序)都不能組成等比數列.

查看答案和解析>>

(1)設a1,a2,…,an是各項均不為零的n(n≥4)項等差數列,且公差d≠0。若將此數列刪去某一項后得到的數列(按原來的順序)是等比數列。
(i)當n=4時,求的數值;
(ii)求n的所有可能值。
(2)求證:對于給定的正整數n(n≥4),存在一個各項及公差均不為零的等差數列b1,b2,…,bn,其中任意三項(按原來順序)都不能組成等比數列。

查看答案和解析>>

(1)設a1,a2,…,an是各項均不為零的n(n≥4)項等差數列,且公差d≠0,若將此數列刪去某一項后得到的數列(按原來的順序)是等比數列.
(i)當n=4時,求的數值;
(ii)求n的所有可能值.
(2)求證:對于給定的正整數n(n≥4),存在一個各項及公差均不為零的等差數列b1,b2,…,bn,其中任意三項(按原來的順序)都不能組成等比數列.

查看答案和解析>>

(1)設a1,a2,…,an是各項均不為零的n(n≥4)項等差數列,且公差d≠0,若將此數列刪去某一項后得到的數列(按原來的順序)是等比數列.
(i)當n=4時,求
a1
d
的數值;
(ii)求n的所有可能值.
(2)求證:對于給定的正整數n(n≥4),存在一個各項及公差均不為零的等差數列b1,b2,…,bn,其中任意三項(按原來的順序)都不能組成等比數列.

查看答案和解析>>

(1)設a1,a2,…,an是各項均不為零的n(n≥4)項等差數列,且公差d≠0,若將此數列刪去某一項后得到的數列(按原來的順序)是等比數列.
(i)當n=4時,求的數值;
(ii)求n的所有可能值.
(2)求證:對于給定的正整數n(n≥4),存在一個各項及公差均不為零的等差數列b1,b2,…,bn,其中任意三項(按原來的順序)都不能組成等比數列.

查看答案和解析>>


同步練習冊答案
久久精品免费一区二区视