題目列表(包括答案和解析)
已知函數的圖象過坐標原點O,且在點
處的切線的斜率是
.
(Ⅰ)求實數的值;
(Ⅱ)求在區間
上的最大值;
(Ⅲ)對任意給定的正實數,曲線
上是否存在兩點P、Q,使得
是以O為直角頂點的直角三角形,且此三角形斜邊中點在
軸上?說明理由.
【解析】第一問當時,
,則
。
依題意得:,即
解得
第二問當時,
,令
得
,結合導數和函數之間的關系得到單調性的判定,得到極值和最值
第三問假設曲線上存在兩點P、Q滿足題設要求,則點P、Q只能在
軸兩側。
不妨設,則
,顯然
∵是以O為直角頂點的直角三角形,∴
即 (*)若方程(*)有解,存在滿足題設要求的兩點P、Q;
若方程(*)無解,不存在滿足題設要求的兩點P、Q.
(Ⅰ)當時,
,則
。
依題意得:,即
解得
(Ⅱ)由(Ⅰ)知,
①當時,
,令
得
當變化時,
的變化情況如下表:
|
|
0 |
|
|
|
|
— |
0 |
+ |
0 |
— |
|
|
極小值 |
單調遞增 |
極大值 |
|
又,
,
!
在
上的最大值為2.
②當時,
.當
時,
,
最大值為0;
當時,
在
上單調遞增!
在
最大值為
。
綜上,當時,即
時,
在區間
上的最大值為2;
當時,即
時,
在區間
上的最大值為
。
(Ⅲ)假設曲線上存在兩點P、Q滿足題設要求,則點P、Q只能在
軸兩側。
不妨設,則
,顯然
∵是以O為直角頂點的直角三角形,∴
即 (*)若方程(*)有解,存在滿足題設要求的兩點P、Q;
若方程(*)無解,不存在滿足題設要求的兩點P、Q.
若,則
代入(*)式得:
即,而此方程無解,因此
。此時
,
代入(*)式得: 即
(**)
令
,則
∴在
上單調遞增, ∵
∴
,∴
的取值范圍是
。
∴對于,方程(**)總有解,即方程(*)總有解。
因此,對任意給定的正實數,曲線
上存在兩點P、Q,使得
是以O為直角頂點的直角三角形,且此三角形斜邊中點在
軸上
長沙市某民營化工企業經過近十年打拼,目前凈資產已達3千萬元. 由于種種原因,影響了企業的進一步發展,企業領導班子決定對企業內部所有環節進行改革. 據市場調查報告顯示:在未來五年內,若引進新的技術及設備改造后,企業的生產總量為x千噸,最大限度不能超過4千噸,而每千噸銷售可獲純利P(x)與生產總量x的函數關系為 由于該企業的產品市場占有量較大,產量的大小對每千噸產品的純利潤影響較大. 如果企業的生產總量為1千噸時,市場該產品每千噸銷售可獲純利
萬元,如果生產總量達到最大限度值4千噸,此時市場需求趨于飽和狀態,每千噸銷售只能獲純利
萬元.企業在人員工資給、產品廣告費用及環境污染治理等方面需投入每千噸1萬元.
(1)求出常數a,b的值;
(2)求出該企業在未來五年內凈資產的總額(單位:千萬元)關于生產總量x(單位:千噸)的函數表達式;
(3)當生產總量x(單位:千噸)取值為多少時,該企業在未來五年內凈資產的總額(單位:千萬元)取最大值,并求出此最大值.
已知正三角形ABC的頂點A(1,1),B(1,3),頂點C在第一象限,若點(x,y)在△ABC內部,則z=-x+y的取值范圍是
(A)(1-,2) (B)(0,2)
(C)(
-1,2) (D)(0,1+
)
【解析】 做出三角形的區域如圖,由圖象可知當直線
經過點B時,截距最大,此時
,當直線經過點C時,直線截距最小.因為
軸,所以
,三角形的邊長為2,設
,則
,解得
,
,因為頂點C在第一象限,所以
,即
代入直線
得
,所以
的取值范圍是
,選A.
已知函數,其中
.
(1)若在
處取得極值,求曲線
在點
處的切線方程;
(2)討論函數在
的單調性;
(3)若函數在
上的最小值為2,求
的取值范圍.
【解析】第一問,因
在
處取得極值
所以,,解得
,此時
,可得求曲線
在點
處的切線方程為:
第二問中,易得的分母大于零,
①當時,
,函數
在
上單調遞增;
②當時,由
可得
,由
解得
第三問,當時由(2)可知,
在
上處取得最小值
,
當時由(2)可知
在
處取得最小值
,不符合題意.
綜上,函數在
上的最小值為2時,求
的取值范圍是
3 |
3 |
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com