題目列表(包括答案和解析)
如圖,,
,…,
,…是曲線
上的點,
,
,…,
,…是
軸正半軸上的點,且
,
,…,
,…
均為斜邊在
軸上的等腰直角三角形(
為坐標原點).
(1)寫出、
和
之間的等量關系,以及
、
和
之間的等量關系;
(2)求證:(
);
(3)設,對所有
,
恒成立,求實數
的取值范圍.
【解析】第一問利用有,
得到
第二問證明:①當時,可求得
,命題成立;②假設當
時,命題成立,即有
則當
時,由歸納假設及
,
得
第三問
.………………………2分
因為函數在區間
上單調遞增,所以當
時,
最大為
,即
解:(1)依題意,有,
,………………4分
(2)證明:①當時,可求得
,命題成立;
……………2分
②假設當時,命題成立,即有
,……………………1分
則當時,由歸納假設及
,
得.
即
解得(
不合題意,舍去)
即當時,命題成立. …………………………………………4分
綜上所述,對所有,
. ……………………………1分
(3)
.………………………2分
因為函數在區間
上單調遞增,所以當
時,
最大為
,即
.……………2分
由題意,有.
所以,
如圖所示的長方體中,底面
是邊長為
的正方形,
為
與
的交點,
,
是線段
的中點.
(Ⅰ)求證:平面
;
(Ⅱ)求證:平面
;
(Ⅲ)求二面角的大小.
【解析】本試題主要考查了線面平行的判定定理和線面垂直的判定定理,以及二面角的求解的運用。中利用,又
平面
,
平面
,∴
平面
由
,
,又
,∴
平面
.
可得證明
(3)因為∴為面
的法向量.∵
,
,
∴為平面
的法向量.∴利用法向量的夾角公式,
,
∴與
的夾角為
,即二面角
的大小為
.
方法一:解:(Ⅰ)建立如圖所示的空間直角坐標系.連接,則點
、
,
∴,又點
,
,∴
∴,且
與
不共線,∴
.
又平面
,
平面
,∴
平面
.…………………4分
(Ⅱ)∵,
∴,
,即
,
,
又,∴
平面
. ………8分
(Ⅲ)∵,
,∴
平面
,
∴為面
的法向量.∵
,
,
∴為平面
的法向量.∴
,
∴與
的夾角為
,即二面角
的大小為
已知函數.
(Ⅰ)求函數的單調區間;
(Ⅱ)設,若對任意
,
,不等式
恒成立,求實數
的取值范圍.
【解析】第一問利用的定義域是
由x>0及 得1<x<3;由x>0及
得0<x<1或x>3,
故函數的單調遞增區間是(1,3);單調遞減區間是
第二問中,若對任意不等式
恒成立,問題等價于
只需研究最值即可。
解: (I)的定義域是
......1分
............. 2分
由x>0及 得1<x<3;由x>0及
得0<x<1或x>3,
故函數的單調遞增區間是(1,3);單調遞減區間是
........4分
(II)若對任意不等式
恒成立,
問題等價于,
.........5分
由(I)可知,在上,x=1是函數極小值點,這個極小值是唯一的極值點,
故也是最小值點,所以; ............6分
當b<1時,;
當時,
;
當b>2時,;
............8分
問題等價于 ........11分
解得b<1 或 或
即
,所以實數b的取值范圍是
已知點(
),過點
作拋物線
的切線,切點分別為
、
(其中
).
(Ⅰ)若,求
與
的值;
(Ⅱ)在(Ⅰ)的條件下,若以點為圓心的圓
與直線
相切,求圓
的方程;
(Ⅲ)若直線的方程是
,且以點
為圓心的圓
與直線
相切,
求圓面積的最小值.
【解析】本試題主要考查了拋物線的的方程以及性質的運用。直線與圓的位置關系的運用。
中∵直線與曲線
相切,且過點
,∴
,利用求根公式得到結論先求直線
的方程,再利用點P到直線的距離為半徑,從而得到圓的方程。
(3)∵直線的方程是
,
,且以點
為圓心的圓
與直線
相切∴點
到直線
的距離即為圓
的半徑,即
,借助于函數的性質圓
面積的最小值
(Ⅰ)由可得,
. ------1分
∵直線與曲線
相切,且過點
,∴
,即
,
∴,或
, --------------------3分
同理可得:,或
----------------4分
∵,∴
,
. -----------------5分
(Ⅱ)由(Ⅰ)知,,
,則
的斜率
,
∴直線的方程為:
,又
,
∴,即
. -----------------7分
∵點到直線
的距離即為圓
的半徑,即
,--------------8分
故圓的面積為
. --------------------9分
(Ⅲ)∵直線的方程是
,
,且以點
為圓心的圓
與直線
相切∴點
到直線
的距離即為圓
的半徑,即
, ………10分
∴
,
當且僅當,即
,
時取等號.
故圓面積的最小值
.
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com