題目列表(包括答案和解析)
已知函數的圖象過坐標原點O,且在點
處的切線的斜率是
.
(Ⅰ)求實數的值;
(Ⅱ)求在區間
上的最大值;
(Ⅲ)對任意給定的正實數,曲線
上是否存在兩點P、Q,使得
是以O為直角頂點的直角三角形,且此三角形斜邊中點在
軸上?說明理由.
【解析】第一問當時,
,則
。
依題意得:,即
解得
第二問當時,
,令
得
,結合導數和函數之間的關系得到單調性的判定,得到極值和最值
第三問假設曲線上存在兩點P、Q滿足題設要求,則點P、Q只能在
軸兩側。
不妨設,則
,顯然
∵是以O為直角頂點的直角三角形,∴
即 (*)若方程(*)有解,存在滿足題設要求的兩點P、Q;
若方程(*)無解,不存在滿足題設要求的兩點P、Q.
(Ⅰ)當時,
,則
。
依題意得:,即
解得
(Ⅱ)由(Ⅰ)知,
①當時,
,令
得
當變化時,
的變化情況如下表:
|
|
0 |
|
|
|
|
— |
0 |
+ |
0 |
— |
|
|
極小值 |
單調遞增 |
極大值 |
|
又,
,
。∴
在
上的最大值為2.
②當時,
.當
時,
,
最大值為0;
當時,
在
上單調遞增!
在
最大值為
。
綜上,當時,即
時,
在區間
上的最大值為2;
當時,即
時,
在區間
上的最大值為
。
(Ⅲ)假設曲線上存在兩點P、Q滿足題設要求,則點P、Q只能在
軸兩側。
不妨設,則
,顯然
∵是以O為直角頂點的直角三角形,∴
即 (*)若方程(*)有解,存在滿足題設要求的兩點P、Q;
若方程(*)無解,不存在滿足題設要求的兩點P、Q.
若,則
代入(*)式得:
即,而此方程無解,因此
。此時
,
代入(*)式得: 即
(**)
令
,則
∴在
上單調遞增, ∵
∴
,∴
的取值范圍是
。
∴對于,方程(**)總有解,即方程(*)總有解。
因此,對任意給定的正實數,曲線
上存在兩點P、Q,使得
是以O為直角頂點的直角三角形,且此三角形斜邊中點在
軸上
已知命題: P:對任意,不等式
恒成立;
q:函數存在極大值和極小值。
求使命題“p且q”為真命題的m的取值范圍。
一、選擇題:
1―5:ACCCB 6―10:CDACD 11―12:BC
二、填空題:
13.2 14. 15.5
16.①
②球的體積函數的導數等于球的表面積函數
三、解答題:
17.(本小題滿分12分)
解:(I)……………………2分
……………………4分
……………………………………………………………………5分
(II)、B均為銳角且B<A
又C為鈍角
∴最短邊為b……………………………………………………7分
由,解得
………………………………9分
又…………………………12分
18.(本小題滿分12分)
解:(I)
………………………………3分
故…………………………………………………4分
(II)令.
若時,當
時,函數
…………………………………………………………6分
若時,當
時,函數
…………………………………………………………8分
(III)由
確定單調遞增的正值區間是
;
由
確定單調遞減的正值區間是
;………10分
綜上,當時,函數
的單調遞增區間為
.
當時,函數
的單調遞增區間為
.……12分
注:①
的這些
等價形式中,以最好用. 因為復合函數
的中間變量
是增函數,對求
的單調區間來說,
只看外層函數的單調性即可.否則,利用
的其它形
式,例如求單調區間是非常容易出錯的. 同學們可以嘗試做一
下的其它形式,認真體會,比較優劣!
②今后遇到求類似的單調區間問題,應首先通過誘導公式將
轉化為標準形
式:(其中A>0,ω>0),然后再行求
解,保險系數就大了.
19.(本小題滿分12分)
解:(I)由已知……………………1分
…………3分
由已知
∴公差d=1…………………………………………………………4分
……………………………………………………6分
(II)設…………………………7分
當時,
是k的增函數,
也是k的增函數.
………………………………10分
又
不存在
,使
…………………………………12分
20.(本小題滿分12分)
解:恒成立
只需小于
的最小值…………………………………………2分
而當時,
≥3……………………………………………4分
……………………………………………………6分
存在極大值與極小值
有兩個不等的實根…………………………8分
或
…………………………………………………………10分
要使“P且Q”為真,只需
故m的取值范圍為[2,6].…………………………………………………12分
21.(本小題滿分12分)
解:設此工廠應分別生產甲、乙兩種產品x噸、y噸,獲得利潤z萬元………1分
依題意可得約束條件:
|