24.解:(1)如圖.過點P作PDAB.垂足為D.由垂徑定理得AD=DB=5(). 查看更多

 

題目列表(包括答案和解析)

閱讀下面的材料,并回答所提出的問題:如圖所示,在銳角三角形ABC中,求證:
b
sinB
=
c
sinC

這個三角形不是一個直角三角形,不能直接使用銳角三角函數的知識去處理,所以必須構造直角三角形,精英家教網過點A作AD⊥BC,垂足為D,則在Rt△ABD和Rt△ACD中由正弦定義可完成證明.
解:如圖,過點A作AD⊥BC,垂足為D,
在Rt△ABD中,sinB=
AD
AB
,則AD=csinB
Rt△ACD中,sinC=
AD
AC
,則AD=bsinC
所以c sinB=b sinC,即
b
sinB
=
c
sinC

(1)在上述分析證明過程中,主要用到了下列三種數學思想方法的哪一種( 。
A、數形結合的思想;B、轉化的思想;C、分類的思想
(2)用上述思想方法解答下面問題.
在△ABC中,∠C=60°,AC=6,BC=8,求AB和△ABC的面積.
(3)用上述結論解答下面的問題(不必添加輔助線)
在銳角三角形ABC中,AC=10,AB=5
6
,∠C=60°,求∠B的度數.

查看答案和解析>>

數學課上,李老師出示范了如下框中的題目.
 
小敏與同桌小聰討論后,進行了如下解答:
(1)特殊情況,探索結論
當點E為AB的中點時,如圖1,確定線段AE與DB的大小關系.請你直接寫出結論:AE      DB(填“>”、“<”或“=”);

(2)特例啟發,解答題目
解:題目中,AE與DB的大小關系是:AE      DB(填“>”、“<”或“=”).理由如下:
如圖2過點E作EF∥BC,交AC于點F;(請你完成以下解答過程)

(3)拓展結論,設計新題
在等邊三角形ABC中,點E在直線AB上,點D在直線BC上,且ED=EC.若△ABC的邊長為1,AE=2,求CD的長(請你直接寫出結果).

查看答案和解析>>

數學課上,李老師出示范了如下框中的題目.

 

小敏與同桌小聰討論后,進行了如下解答:

(1)特殊情況,探索結論

當點E為AB的中點時,如圖1,確定線段AE與DB的大小關系.請你直接寫出結論:AE      DB(填“>”、“<”或“=”);

(2)特例啟發,解答題目

解:題目中,AE與DB的大小關系是:AE      DB(填“>”、“<”或“=”).理由如下:

如圖2過點E作EF∥BC,交AC于點F;(請你完成以下解答過程)

(3)拓展結論,設計新題

在等邊三角形ABC中,點E在直線AB上,點D在直線BC上,且ED=EC.若△ABC的邊長為1,AE=2,求CD的長(請你直接寫出結果).

 

查看答案和解析>>

已知反比例函數的圖象經過點A,6).

(1)求m的值;

(2)如圖,過點A作直線AC與函數的圖象交于點B,與x軸交于點C,且,求點B的坐標.          

解:                                                 

                                                               

 

查看答案和解析>>

閱讀下面的材料,并回答所提出的問題:如圖所示,在銳角三角形ABC中,求證:
這個三角形不是一個直角三角形,不能直接使用銳角三角函數的知識去處理,所以必須構造直角三角形,過點A作AD⊥BC,垂足為D,則在Rt△ABD和Rt△ACD中由正弦定義可完成證明.
解:如圖,過點A作AD⊥BC,垂足為D,
在Rt△ABD中,sinB=,則AD=csinB
Rt△ACD中,sinC=,則AD=bsinC
所以c sinB=b sinC,即
(1)在上述分析證明過程中,主要用到了下列三種數學思想方法的哪一種( )
A、數形結合的思想;B、轉化的思想;C、分類的思想
(2)用上述思想方法解答下面問題.
在△ABC中,∠C=60°,AC=6,BC=8,求AB和△ABC的面積.
(3)用上述結論解答下面的問題(不必添加輔助線)
在銳角三角形ABC中,AC=10,AB=,∠C=60°,求∠B的度數.

查看答案和解析>>


同步練習冊答案
久久精品免费一区二区视