已知函數. 查看更多

 

題目列表(包括答案和解析)

已知函數,f(X)=log2x的反函數為f-1(x),等比數列{an}的公比為2,若f-1(a2)•f-1(a4)=210,則2f(a1)+f(a2)+…+f(a2009=( 。
A、21004×2008B、21005×2009C、21005×2008D、21004×2009

查看答案和解析>>

已知函數,f(x)=Acos2(ωx+φ)+1(A>0,ω>0,0<φ<
π2
)
的最大值為3,f(x)的圖象的相鄰兩對稱軸間的距離為2,在y軸上的截距為2.
(I)求函數f(x)的解析式;
(Ⅱ)求f(x)的單調遞增區間.

查看答案和解析>>

已知函數,f(x)=x,g(x)=
3
8
x2+lnx+2

(Ⅰ) 求函數F(x)=g(x)-2•f(x)的極大值點與極小值點;
(Ⅱ) 若函數F(x)=g(x)-2•f(x)在[et,+∞)(t∈Z)上有零點,求t的最大值(e為自然對數的底數);
(Ⅲ) 設bn=f(n)
1
f(n+1)
(n∈N*),試問數列{bn}中是否存在相等的兩項?若存在,求出所有相等的兩項;若不存在,請說明理由.

查看答案和解析>>

已知函數,f(x)=
0(x>0)
-π(x=0)
x
2
3
+1(x<0)
,則復合函數f{f[f(-1)]}=(  )
A、x2+1
B、π2+1
C、-π
D、0

查看答案和解析>>

已知函數,f(x)=
log3x   x>0
2-x       x≤0
,若f(f(-3))∈[k,k+1),k∈Z,則k=
 
,當f(x)=1時,x=
 

查看答案和解析>>

一、選擇題(8小題,每題5分,共40分)

題號

1

2

3

4

5

6

7

8

9

10

答案

D

B

B

B

A

C

D

B

A

D

二、填空題(6小題,每題5分,共30分)

            

11. 5 ;    12.       13.15 ; 15         14。2;   15.

三、解答題(6小題,共80分)

16.解:(1)

 

----------------5分

 

    因為最小正周期為,∴        ,∴;----------6分

 

(2)由(1)知                   ,

 

因為,∴-------------------8分

因為             ,∴                   

 

所以----------------10分

     所以         或       .------------------12分

 

17.解:(1)已知函數,       ------2   

又函數圖象在點處的切線與直線平行,且函數處取得極值,,且,解得

,且   --------------5分     

,        

所以函數的單調遞減區間為  -----------------8分           

(2)當時,,又函數上是減函數

上恒成立,   --------------10分 

上恒成立。----------------12分

 

18.解:(1)

分組

頻數

頻率

50.5~60.5

4

0.08

60.5~70.5

8

0.16

70.5~80.5

10

0.20

80.5~90.5

16

0.32

90.5~100.5

12

0.24

合計

50

1.00

 

 

 

---------------------4分

(2) 頻數直方圖如右上所示--------------------------------8分

(3) 成績在75.5~80.5分的學生占70.5~80.5分的學生的,因為成績在70.5~80.5分的學生頻率為0.2 ,所以成績在76.5~80.5分的學生頻率為0.1 ,---------10分

成績在80.5~85.5分的學生占80.5~90.5分的學生的,因為成績在80.5~90.5分的學生頻率為0.32 ,所以成績在80.5~85.5分的學生頻率為0.16  -------------12分

所以成績在76.5~85.5分的學生頻率為0.26,

由于有900名學生參加了這次競賽,

所以該校獲得二等獎的學生約為0.26´900=234(人)    -------------14分

19.解(Ⅰ)證明:∵PA⊥底面ABCD,MN底面ABCD

∴MN⊥PA   又MN⊥AD   且PA∩AD=A

∴MN⊥平面PAD  ………………3分

MN平面PMN   ∴平面PMN⊥平面PAD  …………4分

(Ⅱ)∵BC⊥BA   BC⊥PA   PA∩BA=A   ∴BC⊥平面PBA

∴∠BPC為直線PC與平面PBA所成的角  即…………7分

在Rt△PBC中,PC=BC/sin∠BPC=


  ………………10分

(Ⅲ)由(Ⅰ)MN⊥平面PAD知   PM⊥MN   MQ⊥MN

∴∠PMQ即為二面角P―MN―Q的平面角  …………12分

      ∴   …………14分

20.(14分)

解(1),動圓的半徑為r,則|PQ1|=r+3,

|PQ2|= r+1,|PQ1|-|PQ2|=2,…………………3分

P的軌跡是以O1O2為焦點的雙曲線右支,a=1,c=2,

方程為………………………………………………6分

   (2)設Px1,y1),Qx2,y2),當k不存在時,不合題意.

       直線PQ的方程為y=kx-3),

       ………………8分

       由

       、

       …………………………………………………………10分

       …………14分

 

 

 

 

 

 

21.  (1)設----------------3

,又

---------------------------------5

(2)由已知得

兩式相減得,-------------------------7

.若

-------------------------------9

(3) 由,

.-----------------------------------11分

------------------------------13

可知,-------------------------------14. 分

 

 


同步練習冊答案
久久精品免费一区二区视