A.0.8413 B.0.9544 C.0.9772 D.0.6826 查看更多

 

題目列表(包括答案和解析)

(2013•海口二模)?谑心炒慰荚囉10000名考生,現從中隨機抽取100名考生的成績x1,x2,x3,…,x100作為樣本,執行如圖所示的程序框圖,輸入x1,x2,x3,…,x100,輸出的結果S=4,
.
x
=7
.若總體服從正態分布,試估計該次考試中10000名考生的成績不小于5分的人數為( 。▍⒖紨祿喝鬤~N(μ,σ2),則P(μ-σ<X≤μ+σ)=0.6826;P(μ-2σ<X≤μ+2σ)=0.9544;P(μ-3σ<X≤μ+3σ)=0.9974)

查看答案和解析>>

某地區數學考試的成績X服從正態分布,其密度曲線如圖所示,成績X位于區間(52,68]的概率是(   )

A.0.6826    B.0.9544    C.0.9974    D.0.3413

 


 

查看答案和解析>>

如圖所示,二次函數y=ax2+bx+c(a≠0)的圖象經過點(-1,2),且與x軸交點的橫坐標分別為x1,x2.其中-2<x1<-1,0<x2<1,
下列結論:
①4a-2b+c<0;  
②2a-b<0; 
③a<-1; 
④b2+8a>4ac.
其中正確的有( 。

查看答案和解析>>

1
a
1
b
<0則下列不等式:①a+b<ab,②|a|>|b|,③a<b中,正確的不等式有(  )
A、1 個
B、2個
C、3 個
D、0個

查看答案和解析>>

某同學為了研究學生的性別與是否支持某項活動的關系,運用2×2列聯表進行獨立性檢驗,已知樣本的觀測值K2=7.28,臨界值如下表所示:
P(K2≥k0 0.1 0.05 0.025 0.01 0.005 0.001
k0 2.706 3.841 5.024 6.635 7.897 10.828
則有多大把握認為“學生的性別與支持這項活動有關系”(  )
A、99.9%B、99.5%
C、99.3%D、99%

查看答案和解析>>

一、選擇題

1.B  2.A  3.C  4.B  5.B  6.D  7.C  8.C  9.D  10.A

二、填空題

11.  12.  13.-6  14.;  15.①②③④

三、解答題

16.解:⑴

                                                                                                                  3分

=1+1+2cos2x=2+2cos2x=4cos2x

∵x∈[0,]  ∴cosx≥0

=2cosx                                                                                                     6分

⑵ f (x)=cos2x-?2cosx?sinx=cos2x-sin2x

      =2cos(2x+)                                                                                            8分

∵0≤x≤  ∴  ∴  ∴

,當x=時取得該最小值

 ,當x=0時取得該最大值                                                                    12分

17.由題意知,在甲盒中放一球概率為時,在乙盒放一球的概率為                  2分

①當n=3時,x=3,y=0的概率為                                                 4分

②當n=4時,x+y=4,又|x-y|=ξ,所以ξ的可能取值為0,2,4

(i)當ξ=0時,有x=2,y=2,它的概率為                                      4分

(ii)當ξ=2時,有x=3,y=1或x=1,y=3

   它的概率為

(iii)當ξ=4時,有x=4,y=0或x=0,y=4

   它的概率為

故ξ的分布列為

ξ

0

2

4

10分

p

∴ξ的數學期望Eξ=                                                             12分

18.解:⑴證明:在正方形ABCD中,AB⊥BC

又∵PB⊥BC  ∴BC⊥面PAB  ∴BC⊥PA

同理CD⊥PA  ∴PA⊥面ABCD    4分

⑵在AD上取一點O使AO=AD,連接E,O,

則EO∥PA,∴EO⊥面ABCD 過點O做

OH⊥AC交AC于H點,連接EH,則EH⊥AC,

從而∠EHO為二面角E-AC-D的平面角                                                             6分

在△PAD中,EO=AP=在△AHO中∠HAO=45°,

∴HO=AOsin45°=,∴tan∠EHO=,

∴二面角E-AC-D等于arctan                                                                    8分

⑶當F為BC中點時,PF∥面EAC,理由如下:

∵AD∥2FC,∴,又由已知有,∴PF∥ES

∵PF面EAC,EC面EAC  ∴PF∥面EAC,

即當F為BC中點時,PF∥面EAC                                                                         12分

19.⑴據題意,得                                                4分

                                                                          5分

⑵由⑴得:當5<x<7時,y=39(2x3-39x2+252x-535)

當5<x<6時,y'>0,y=f (x)為增函數

當6<x<7時,y'<0,y=f (x)為減函數

∴當x=6時,f (x)極大值=f (16)=195                                                                      8分

當7≤x<8時,y=6(33-x)∈(150,156]

當x≥8時,y=-10(x-9)2+160

當x=9時,y極大=160                                                                                           10分

綜上知:當x=6時,總利潤最大,最大值為195                                                     12分

20.⑴設M(x0,y0),則N(x0,-y0),P(x,y)

(x0≠-1且x0≠3)

BN:y=  、

聯立①②  ∴                                                                                        4分

∵點M(xo,yo)在圓⊙O上,代入圓的方程:

整理:y2=-2(x+1)  (x<-1)                                                                             6分

⑵由

設S(x1、y1),T(x2、y2),ST的中點坐標(x0、y0)

則x1+x2=-(3+)

x1x2                                                                                                           8分

中點到直線的距離

故圓與x=-總相切.                                                                                         13分

⑵另解:∵y2=-2(x+1)知焦點坐標為(-,0)                                                   2分

頂點(-1,0),故準線x=-                                                                               4分

設S、T到準線的距離為d1,d2,ST的中點O',O'到x=-的距離為

又由拋物線定義:d1+d2=|ST|,∴

故以ST為直徑的圓與x=-總相切                                                                      8分

21.解:⑴由,得

,有

    =

    =

又b12a1=2,                                                                               3分

                                                                                    4分

⑵證法1:(數學歸納法)

1°,當n=1時,a1=1,滿足不等式                                                    5分

2°,假設n=k(k≥1,k∈N*)時結論成立

,那么

                                                                                                       7分

由1°,2°可知,n∈N*,都有成立                                                           9分

⑵證法2:由⑴知:                (可參照給分)

,,∴

  ∵

  ∴

當n=1時,,綜上

⑵證法3:

∴{an}為遞減數列

當n=1時,an取最大值  ∴an≤1

由⑴中知  

綜上可知

欲證:即證                                                                             11分

即ln(1+Tn)-Tn<0,構造函數f (x)=ln(1+x)-x

當x>0時,f ' (x)<0

∴函數y=f (x)在(0,+∞)內遞減

∴f (x)在[0,+∞)內的最大值為f (0)=0

∴當x≥0時,ln(1+x)-x≤0

又∵Tn>0,∴ln(1+Tn)-Tn<0

∴不等式成立                                                                                           14分

 

久久精品免费一区二区视