△MAB的面積分別為的最小值是 A.9 B.18 C.16 D.20 查看更多

 

題目列表(包括答案和解析)

已知△ABC的面積為1,設M是△ABC內的一點(不在邊界上),定義f(M)=(x,y,z),其中x,y,z分別表示△MBC,△MCA,△MAB的面積,若,則的最小值為( )
A.8
B.9
C.16
D.18

查看答案和解析>>

已知M是面積為1的△ABC內的一點,若△MBC,△MCA,△MAB的面積分別為,x,y,則的最小值為( )
A.20
B.18
C.16
D.9

查看答案和解析>>

內一點,且的面積為2,定義,其中分別是ΔMBC,ΔMCA,ΔMAB的面積,若內一動點滿足,則的最小值是(   )

A.1                B.4                C.9                D.12

 

查看答案和解析>>

內一點,且的面積為2,定義,其中分別是ΔMBC,ΔMCA,ΔMAB的面積,若內一動點滿足,則的最小值是(   )

A.1B.4C.9D.12

查看答案和解析>>

內一點,且的面積為2,定義,其中分別是ΔMBC,ΔMCA,ΔMAB的面積,若內一動點滿足,則的最小值是(   )
A.1B.4C.9D.12

查看答案和解析>>

一、選擇題

2,4,6

二、填空題

13.   14.3   15.-192    16. 22.2

三、解答題

17.解:(1)∵

①……………………2分

②……………………4分

聯立①,②解得:……………………6分

(2)

……………………10分

……………………11分

此時……………………12分

18.解:以D1為原點,D1A1所在直線為x軸,D1C1所在直線為y軸,D1D所在直線為z軸建立空間直角坐標系,

則D1(0,0,0),A1(2,0,0),B1(2,2,0),C1(0,2,0),D(0,0,2),A(2,0,2),B(2,2,2),C(0,2,2)P(1,1,4)………………2分

   (1)∵

∴PA⊥B1D1.…………………………4分

(2)平面BDD1B­1的法向量為……………………6分

設平面PAD的法向量,則n⊥

…………………………10分

設所求銳二面角為,則

……………………12分

19.解:(1)從50名教師隨機選出2名的方法數為

選出2人使用版本相同的方法數為

故2人使用版本相同的概率為:

…………………………5分

(2)∵,

0

1

2

P

的分布列為

 

 

………………10分

……………………12分

可以不扣分)

20.解:(1)依題意,

兩式相減得,得

……………………4分

當n=1時,

=1適合上式……………………5分

…………………………6分

(2)由題意,

………………10分

不等式恒成立,即恒成立.…………11分

經檢驗:時均適合題意(寫出一個即可).……………………12分

21.解:(1)設

由條件知

故C的方程為:……………………4分

(2)由

…………………………5分

l與橢圓C交點為

(*)

……………………7分

消去

整理得………………9分

,

,

容易驗證所以(*)成立

即所求m的取值范圍為………………12分

22.(1)證明:假設存在使得

…………………………2分

上的單調增函數.……………………5分

是唯一的.……………………6分

(2)設

上的單調減函數.

……………………8分

…………10分

…………12分

為鈍角

∴△ABC為鈍角三角形.……………………14分

 

 


同步練習冊答案
久久精品免费一区二区视