題目列表(包括答案和解析)
(1),
則
(4分)
(2)由(1)知,則
①當時,
,令
或
,
在
上的值域為
(7分)
② 當時,
a.若
,則
b.若,則
在
上是單調減的
在
上的值域為
c.若則
在
上是單調增的
在
上的值域為
(9分)
綜上所述,當時,
在
的值域為
當時,
在
的值域為
(10分)
當時,若
時,
在
的值域為
若時,
在
的值域為
(12分)
即 當時,
在
的值域為
當時,
在
的值域為
當時,
在
的值域為
(1),
則
(4分)
(2)由(1)知,則
①當時,
,令
或
,
在
上的值域為
(7分)
② 當時,
a.若
,則
b.若,則
在
上是單調減的
在
上的值域為
c.若則
在
上是單調增的
在
上的值域為
(9分)
綜上所述,當時,
在
的值域為
當時,
在
的值域為
(10分)
當時,若
時,
在
的值域為
若時,
在
的值域為
(12分)
即 當時,
在
的值域為
當時,
在
的值域為
當時,
在
的值域為
(1),
則
(4分)
(2)由(1)知,則
①當時,
,令
或
,
在
上的值域為
(7分)
② 當時,
a.若
,則
b.若,則
在
上是單調減的
在
上的值域為
c.若則
在
上是單調增的
在
上的值域為
(9分)
綜上所述,當時,
在
的值域為
當時,
在
的值域為
(10分)
當時,若
時,
在
的值域為
若時,
在
的值域為
(12分)
即 當時,
在
的值域為
當時,
在
的值域為
當時,
在
的值域為
已知函數f(x)=ex-ax,其中a>0.
(1)若對一切x∈R,f(x) 1恒成立,求a的取值集合;
(2)在函數f(x)的圖像上去定點A(x1, f(x1)),B(x2, f(x2))(x1<x2),記直線AB的斜率為k,證明:存在x0∈(x1,x2),使恒成立.
【解析】解:令
.
當時
單調遞減;當
時
單調遞增,故當
時,
取最小值
于是對一切恒成立,當且僅當
. ①
令則
當時,
單調遞增;當
時,
單調遞減.
故當時,
取最大值
.因此,當且僅當
時,①式成立.
綜上所述,的取值集合為
.
(Ⅱ)由題意知,令
則
令,則
.當
時,
單調遞減;當
時,
單調遞增.故當
,
即
從而,
又
所以因為函數
在區間
上的圖像是連續不斷的一條曲線,所以存在
使
即
成立.
【點評】本題考查利用導函數研究函數單調性、最值、不等式恒成立問題等,考查運算能力,考查分類討論思想、函數與方程思想等數學方法.第一問利用導函數法求出取最小值
對一切x∈R,f(x)
1恒成立轉化為
從而得出求a的取值集合;第二問在假設存在的情況下進行推理,然后把問題歸結為一個方程是否存在解的問題,通過構造函數,研究這個函數的性質進行分析判斷.
設函數.
(I)求的單調區間;
(II)當0<a<2時,求函數在區間
上的最小值.
【解析】第一問定義域為真數大于零,得到.
.
令,則
,所以
或
,得到結論。
第二問中, (
).
.
因為0<a<2,所以,
.令
可得
.
對參數討論的得到最值。
所以函數在
上為減函數,在
上為增函數.
(I)定義域為. ………………………1分
.
令,則
,所以
或
. ……………………3分
因為定義域為,所以
.
令,則
,所以
.
因為定義域為,所以
. ………………………5分
所以函數的單調遞增區間為,
單調遞減區間為.
………………………7分
(II) (
).
.
因為0<a<2,所以,
.令
可得
.…………9分
所以函數在
上為減函數,在
上為增函數.
①當,即
時,
在區間上,
在
上為減函數,在
上為增函數.
所以. ………………………10分
②當,即
時,
在區間
上為減函數.
所以.
綜上所述,當時,
;
當時,
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com