題目列表(包括答案和解析)
已知集合A={a1,a2,a3,…,an},n∈N*且n>2,令TA={x|x=ai+aj,ai,aj∈A,1≤i<j≤n},用card(TA)表示集合TA中元素的個數.
①若A={2,4,8,16},則card(TA)=________;
②若ai+1-ai=c(1≤i≤n-1,c為非零常數),則card(TA)=________.
已知數列{an}中,a1=,點(n,2an+1-an)(n∈N*)在直線y=x上,
(1)計算a2,a3,a4的值;
(2)令bn=an+1-an-1,求證:數列{bn}是等比數列;
(3)設Sn、Tn分別為數列{an}、{bn}的前n項和,是否存在實數λ,使得數列{}為等差數列?若存在,試求出λ.的值;若不存在,請說明理由.
(1)求數列{an}的通項an;
(2)若0<a<1,求數列{an}的前n項和Sn;
(3)若a=2,令bn=an·f(an),對任意n∈N*,都有bn>f-1(t),求實數t的取值范圍.
已知等差數列{an}滿足a3=7,a5+a7=26.
(1)求通項an;
(2)令bn=(n∈N*),求數列{bn}的前n項和Tn.
已知函數f(x)=ax3+bx2+cx在x=±1處取得極值,且在x=0處的切線的斜率為-3.
(1)求f(x)的解析式;
(2)若過點A(2,m)可作曲線y=f(x)的三條切線,求實數m的取值范圍.
【解析】本試題主要考查了導數在研究函數中的運用。第一問,利用函數f(x)=ax3+bx2+cx在x=±1處取得極值,且在x=0處的切線的斜率為-3,得到c=-3 ∴a=1, f(x)=x3-3x
(2)中設切點為(x0,x03-3x0),因為過點A(2,m),所以∴m-(x03-3x0)=(3x02-3)(2-x0)分離參數∴m=-2x03+6x02-6
然后利用g(x)=-2x3+6x2-6函數求導數,判定單調性,從而得到要是有三解,則需要滿足-6<m<2
解:(1)f′(x)=3ax2+2bx+c
依題意
又f′(0)=-3
∴c=-3 ∴a=1 ∴f(x)=x3-3x
(2)設切點為(x0,x03-3x0),
∵f′(x)=3x2-3,∴f′(x0)=3x02-3
∴切線方程為y-(x03-3x0)=(3x02-3)(x-x0)
又切線過點A(2,m)
∴m-(x03-3x0)=(3x02-3)(2-x0)
∴m=-2x03+6x02-6
令g(x)=-2x3+6x2-6
則g′(x)=-6x2+12x=-6x(x-2)
由g′(x)=0得x=0或x=2
∴g(x)在(-∞,0)單調遞減,(0,2)單調遞增,(2,+∞)單調遞減.
∴g(x)極小值=g(0)=-6,g(x)極大值=g(2)=2
畫出草圖知,當-6<m<2時,m=-2x3+6x2-6有三解,
所以m的取值范圍是(-6,2).
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com