即為所求切線方程.------ 查看更多

 

題目列表(包括答案和解析)

,,為常數,離心率為的雙曲線上的動點到兩焦點的距離之和的最小值為,拋物線的焦點與雙曲線的一頂點重合。(Ⅰ)求拋物線的方程;(Ⅱ)過直線為負常數)上任意一點向拋物線引兩條切線,切點分別為、,坐標原點恒在以為直徑的圓內,求實數的取值范圍。

【解析】第一問中利用由已知易得雙曲線焦距為,離心率為,則長軸長為2,故雙曲線的上頂點為,所以拋物線的方程

第二問中,,,

故直線的方程為,即

所以,同理可得:

借助于根與系數的關系得到即是方程的兩個不同的根,所以

由已知易得,即

解:(Ⅰ)由已知易得雙曲線焦距為,離心率為,則長軸長為2,故雙曲線的上頂點為,所以拋物線的方程

(Ⅱ)設,,,

故直線的方程為,即

所以,同理可得:,

,是方程的兩個不同的根,所以

由已知易得,即

 

查看答案和解析>>

已知函數 R).

(Ⅰ)若 ,求曲線  在點  處的的切線方程;

(Ⅱ)若  對任意  恒成立,求實數a的取值范圍.

【解析】本試題主要考查了導數在研究函數中的運用。

第一問中,利用當時,

因為切點為(), 則,                 

所以在點()處的曲線的切線方程為:

第二問中,由題意得,即可。

Ⅰ)當時,

,                                  

因為切點為(), 則,                  

所以在點()處的曲線的切線方程為:.    ……5分

(Ⅱ)解法一:由題意得,.      ……9分

(注:凡代入特殊值縮小范圍的均給4分)

,           

因為,所以恒成立,

上單調遞增,                            ……12分

要使恒成立,則,解得.……15分

解法二:                 ……7分

      (1)當時,上恒成立,

上單調遞增,

.                  ……10分

(2)當時,令,對稱軸,

上單調遞增,又    

① 當,即時,上恒成立,

所以單調遞增,

,不合題意,舍去  

②當時,, 不合題意,舍去 14分

綜上所述: 

 

查看答案和解析>>

已知,函數

(1)當時,求函數在點(1,)的切線方程;

(2)求函數在[-1,1]的極值;

(3)若在上至少存在一個實數x0,使>g(xo)成立,求正實數的取值范圍。

【解析】本試題中導數在研究函數中的運用。(1)中,那么當時,  又    所以函數在點(1,)的切線方程為;(2)中令   有 

對a分類討論,和得到極值。(3)中,設,,依題意,只需那么可以解得。

解:(Ⅰ)∵  ∴

∴  當時,  又    

∴  函數在點(1,)的切線方程為 --------4分

(Ⅱ)令   有 

①         當

(-1,0)

0

(0,

,1)

+

0

0

+

極大值

極小值

的極大值是,極小值是

②         當時,在(-1,0)上遞增,在(0,1)上遞減,則的極大值為,無極小值。 

綜上所述   時,極大值為,無極小值

時  極大值是,極小值是        ----------8分

(Ⅲ)設,

求導,得

,    

在區間上為增函數,則

依題意,只需,即 

解得  (舍去)

則正實數的取值范圍是(,

 

查看答案和解析>>

已知函數f(x)=alnx-x2+1.

(1)若曲線y=f(x)在x=1處的切線方程為4x-y+b=0,求實數a和b的值;

(2)若a<0,且對任意x1、x2∈(0,+∞),都|f(x1)-f(x2)|≥|x1-x2|,求a的取值范圍.

【解析】第一問中利用f′(x)=-2x(x>0),f′(1)=a-2,又f(1)=0,所以曲線y=f(x)在x=1處的切線方程為y=(a-2)(x-1),即(a-2)x-y+2-a=0,

由已知得a-2=4,2-a=b,所以a=6,b=-4.

第二問中,利用當a<0時,f′(x)<0,∴f(x)在(0,+∞)上是減函數,

不妨設0<x1≤x2,則|f(x1)-f(x2)|=f(x1)-f(x2),|x1-x2|=x2-x1,

∴|f(x1)-f(x2)|≥|x1-x2|等價于f(x1)-f(x2)≥x2-x1,

即f(x1)+x1≥f(x2)+x2,結合構造函數和導數的知識來解得。

(1)f′(x)=-2x(x>0),f′(1)=a-2,又f(1)=0,所以曲線y=f(x)在x=1處的切線方程為y=(a-2)(x-1),即(a-2)x-y+2-a=0,

由已知得a-2=4,2-a=b,所以a=6,b=-4.

(2)當a<0時,f′(x)<0,∴f(x)在(0,+∞)上是減函數,

不妨設0<x1≤x2,則|f(x1)-f(x2)|=f(x1)-f(x2),|x1-x2|=x2-x1,

∴|f(x1)-f(x2)|≥|x1-x2|等價于f(x1)-f(x2)≥x2-x1,即f(x1)+x1≥f(x2)+x2

令g(x)=f(x)+x=alnx-x2+x+1,g(x)在(0,+∞)上是減函數,

∵g′(x)=-2x+1=(x>0),

∴-2x2+x+a≤0在x>0時恒成立,

∴1+8a≤0,a≤-,又a<0,

∴a的取值范圍是

 

查看答案和解析>>

設函數

(1)當時,求曲線處的切線方程;

(2)當時,求的極大值和極小值;

(3)若函數在區間上是增函數,求實數的取值范圍.

【解析】(1)中,先利用,表示出點的斜率值這樣可以得到切線方程。(2)中,當,再令,利用導數的正負確定單調性,進而得到極值。(3)中,利用函數在給定區間遞增,說明了在區間導數恒大于等于零,分離參數求解范圍的思想。

解:(1)當……2分

   

為所求切線方程。………………4分

(2)當

………………6分

遞減,在(3,+)遞增

的極大值為…………8分

(3)

①若上單調遞增!酀M足要求。…10分

②若

恒成立,

恒成立,即a>0……………11分

時,不合題意。綜上所述,實數的取值范圍是

 

查看答案和解析>>


同步練習冊答案
久久精品免费一区二区视