解 (1)由得. ------1分 查看更多

 

題目列表(包括答案和解析)

由下面四個圖形中的點數分別給出了四個數列的前四項,將每個圖形的層數增加可得到這四個數列的后繼項,按圖中多邊形的邊數依次稱這些數列為“三角形數列”、“四邊形數列”…,將構圖邊數增加到n可得到“n邊形數列”,記它的第r項為P(n,r),則
(1)使得P(3,r)>36的最小r的取值是
9
9
;
(2)試推導P(n,r)關于,n、r的解析式是
(n-2)•r•(r-1)
2
(n-2)•r•(r-1)
2

查看答案和解析>>

解::因為,所以f(1)f(2)<0,因此f(x)在區間(1,2)上存在零點,又因為y=與y=-在(0,+)上都是增函數,因此在(0,+)上是增函數,所以零點個數只有一個方法2:把函數的零點個數個數問題轉化為判斷方程解的個數問題,近而轉化成判斷交點個數問題,在坐標系中畫出圖形


由圖看出顯然一個交點,因此函數的零點個數只有一個

袋中有50個大小相同的號牌,其中標著0號的有5個,標著n號的有n個(n=1,2,…9),現從袋中任取一球,求所取號碼的分布列,以及取得號碼為偶數的概率.

查看答案和解析>>

由下面四個圖形中的點數分別給出了四個數列的前四項,將每個圖形的層數增加可得到這四個數列的后繼項,按圖中多邊形的邊數依次稱這些數列為“三角形數列”、“四邊形數列”…,將構圖邊數增加到n可得到“n邊形數列”,記它的第r項為P(n,r),則
(1)使得P(3,r)>36的最小r的取值是   
(2)試推導P(n,r)關于,n、r的解析式是   

查看答案和解析>>

由下面四個圖形中的點數分別給出了四個數列的前四項,將每個圖形的層數增加可得到這四個數列的后繼項,按圖中多邊形的邊數依次稱這些數列為“三角形數列”、“四邊形數列”…,將構圖邊數增加到n可得到“n邊形數列”,記它的第r項為P(n,r),則
(1)使得P(3,r)>36的最小r的取值是    ;
(2)試推導P(n,r)關于,n、r的解析式是   

查看答案和解析>>

由下面四個圖形中的點數分別給出了四個數列的前四項,將每個圖形的層數增加可得到這四個數列的后繼項,按圖中多邊形的邊數依次稱這些數列為“三角形數列”、“四邊形數列”…,將構圖邊數增加到n可得到“n邊形數列”,記它的第r項為P(n,r),則
(1)使得P(3,r)>36的最小r的取值是   
(2)試推導P(n,r)關于,n、r的解析式是   

查看答案和解析>>


同步練習冊答案
久久精品免费一区二区视