題目列表(包括答案和解析)
已知點(
),過點
作拋物線
的切線,切點分別為
、
(其中
).
(Ⅰ)若,求
與
的值;
(Ⅱ)在(Ⅰ)的條件下,若以點為圓心的圓
與直線
相切,求圓
的方程;
(Ⅲ)若直線的方程是
,且以點
為圓心的圓
與直線
相切,
求圓面積的最小值.
【解析】本試題主要考查了拋物線的的方程以及性質的運用。直線與圓的位置關系的運用。
中∵直線與曲線
相切,且過點
,∴
,利用求根公式得到結論先求直線
的方程,再利用點P到直線的距離為半徑,從而得到圓的方程。
(3)∵直線的方程是
,
,且以點
為圓心的圓
與直線
相切∴點
到直線
的距離即為圓
的半徑,即
,借助于函數的性質圓
面積的最小值
(Ⅰ)由可得,
. ------1分
∵直線與曲線
相切,且過點
,∴
,即
,
∴,或
, --------------------3分
同理可得:,或
----------------4分
∵,∴
,
. -----------------5分
(Ⅱ)由(Ⅰ)知,,
,則
的斜率
,
∴直線的方程為:
,又
,
∴,即
. -----------------7分
∵點到直線
的距離即為圓
的半徑,即
,--------------8分
故圓的面積為
. --------------------9分
(Ⅲ)∵直線的方程是
,
,且以點
為圓心的圓
與直線
相切∴點
到直線
的距離即為圓
的半徑,即
, ………10分
∴
,
當且僅當,即
,
時取等號.
故圓面積的最小值
.
在中,已知
,
;
(1)求的值;(2)若
,求
的值;
【解析】第一問中,利用
第二問中即
又
再有余弦定理解得。
解:(1)
……4分
(2)即
又
……8分
又 即
(本小題滿分12分).
某農場計劃種植某種新作物,為此對這種作物的兩個品種(分別稱為品種甲和品種乙)進行田間試驗.選取兩大塊地,每大塊地分成n小塊地,在總共2n小塊地中,隨機選n小塊地種植品種甲,另外n小塊地種植品種乙.
(I)假設n=2,求第一大塊地都種植品種甲的概率;
(II)試驗時每大塊地分成8小塊,即n=8,試驗結束后得到品種甲和品種乙在個小塊地上的每公頃產量(單位:kg/hm2)如下表:
品種甲 |
403 |
397 |
390 |
404 |
388 |
400 |
412 |
406 |
品種乙 |
419 |
403 |
412 |
418 |
408 |
423 |
400 |
413 |
分別求品種甲和品種乙的每公頃產量的樣本平均數和樣本方差;根據試驗結果,你認為應該種植哪一品種?
附:樣本數據的的樣本方差
,其中
為樣本平均數.
(本小題滿分12分)
某農場計劃種植某種新作物,為此對這種作物的兩個品種(分別稱為品種家和品種乙)進行田間試驗.選取兩大塊地,每大塊地分成n小塊地,在總共2n小塊地中,隨機選n小塊地種植品種甲,另外n小塊地種植品種乙.
(I)假設n=2,求第一大塊地都種植品種甲的概率;
(II)試驗時每大塊地分成8小塊,即n=8,試驗結束后得到品種甲和品種乙在個小塊地上的每公頃產量(單位:kg/hm2)如下表:
品種甲 | 403 | 397 | 390 | 404 | 388 | 400 | 412 | 406 |
品種乙 | 419 | 403 | 412 | 418 | 408 | 423 | 400 | 413 |
(本小題8分)規定記號“※”表示一種運算,即※
,
記※
.
(1)求函數的表達式和它的最小正周期;
(2)若函數在
處取到最大值,求
的值
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com