當時.由得單調遞減區間為 查看更多

 

題目列表(包括答案和解析)

已知函數的導函數。  (1)求函數的單調遞減區間;
(2)若對一切的實數,有成立,求的取值范圍; 
(3)當時,在曲線上是否存在兩點,使得曲線在 兩點處的切線均與直線交于同一點?若存在,求出交點縱坐標的最大值;若不存在,請說明理由.

查看答案和解析>>

已知函數.(

(1)若在區間上單調遞增,求實數的取值范圍;

(2)若在區間上,函數的圖象恒在曲線下方,求的取值范圍.

【解析】第一問中,首先利用在區間上單調遞增,則在區間上恒成立,然后分離參數法得到,進而得到范圍;第二問中,在區間上,函數的圖象恒在曲線下方等價于在區間上恒成立.然后求解得到。

解:(1)在區間上單調遞增,

在區間上恒成立.  …………3分

,而當時,,故. …………5分

所以.                 …………6分

(2)令,定義域為

在區間上,函數的圖象恒在曲線下方等價于在區間上恒成立.   

        …………9分

① 若,令,得極值點,,

,即時,在(,+∞)上有,此時在區間上是增函數,并且在該區間上有,不合題意;

,即時,同理可知,在區間上遞增,

,也不合題意;                     …………11分

② 若,則有,此時在區間上恒有,從而在區間上是減函數;

要使在此區間上恒成立,只須滿足,

由此求得的范圍是.        …………13分

綜合①②可知,當時,函數的圖象恒在直線下方.

 

查看答案和解析>>

已知函數,的導函數。  (1)求函數的單調遞減區間;
(2)若對一切的實數,有成立,求的取值范圍; 
(3)當時,在曲線上是否存在兩點,使得曲線在 兩點處的切線均與直線交于同一點?若存在,求出交點縱坐標的最大值;若不存在,請說明理由.

查看答案和解析>>

已知函數).

(1) 試就實數的不同取值,寫出該函數的單調遞增區間;

(2) 已知當時,函數在上單調遞減,在上單調遞增,求的值并寫出函數的解析式;

(3) (理)記(2)中的函數的圖像為曲線,試問是否存在經過原點的直線,使得為曲線的對稱軸?若存在,求出的方程;若不存在,請說明理由.

    (文) 記(2)中的函數的圖像為曲線,試問曲線是否為中心對稱圖形?若是,請求出對稱中心的坐標并加以證明;若不是,請說明理由.

查看答案和解析>>

已知函數).
(1) 試就實數的不同取值,寫出該函數的單調遞增區間;
(2) 已知當時,函數在上單調遞減,在上單調遞增,求的值并寫出函數的解析式;
(3) (理)記(2)中的函數的圖像為曲線,試問是否存在經過原點的直線,使得為曲線的對稱軸?若存在,求出的方程;若不存在,請說明理由.
(文) 記(2)中的函數的圖像為曲線,試問曲線是否為中心對稱圖形?若是,請求出對稱中心的坐標并加以證明;若不是,請說明理由.

查看答案和解析>>


同步練習冊答案
久久精品免费一区二区视