題目列表(包括答案和解析)
(14分)已知拋物線C的頂點在原點,焦點為F(0,1),且過點A(2,t),
(1)求t的值;
(2)若點P、Q是拋物線C上兩動點,且直線AP與AQ的斜率互為相反數,試問直線PQ的斜率是否為定值,若是,求出這個值;若不是,請說明理由.
如圖1,在中,
,D,E分別為AC,AB的中點,點F為線段CD上的一點,將
沿DE折起到
的位置,使
,如圖2.
(Ⅰ)求證:DE∥平面
(Ⅱ)求證:
(Ⅲ)線段上是否存在點Q,使
?說明理由。
【解析】(1)∵DE∥BC,由線面平行的判定定理得出
(2)可以先證,得出
,∵
∴
∴
(3)Q為的中點,由上問
,易知
,取
中點P,連接DP和QP,不難證出
,
∴
∴
,又∵
∴
(14分)已知拋物線C的頂點在原點,焦點為F(0,1),且過點A(2,t),
(1)求t的值;
(2)若點P、Q是拋物線C上兩動點,且直線AP與AQ的斜率互為相反數,試問直線PQ的斜率是否為定值,若是,求出這個值;若不是,請說明理由.
(本小題滿分14分)
如圖,線段MN的兩個端點M.N分別在x軸.y 軸上滑動,,點P是線段MN上一點,且
,點P隨線段MN的運動而變化.
(1)求點P的軌跡C的方程;
(2)過點(2,0)作直線,與曲線C交于A.B兩點,O是坐標原點,設
是否存在這樣的直線
,使四邊形
的對角線相等(即
)?若存在,求出直線
的方程;若不存在,試說明理由.
(本小題共l2分)
過點C(0,1)的橢圓的離心率為
,橢圓與x軸交于兩點
、
,過點C的直線l與橢圓交于另一點D,并與x軸交于點P,直線AC與直線BD交于點Q.
(I)當直線l過橢圓右焦點時,求線段CD的長;
(Ⅱ)當點P異于點B時,求證:為定值.
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com